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Reviewers:
(1) Akanni John Olajide, KolaDaisi University, Nigeria.

(2) Abdullah Sonmezoglu, Bozok University, Turkey.
(3) Joyce Kagendo Nthiiri, Masinde Muliro University of Science and Technology, Kenya.

Complete Peer review History: http://www.sdiarticle3.com/review-history/46131

Received 23 October 2018
Accepted 06 January 2019

Original Research Article Published 14 February 2019

ABSTRACT

Malaria is a life threatening vector borne disease caused by parasites that are transmitted to people through
the bites of infected female Anopheles mosquitoes. In this paper, we study and analyze mathematical model
of ordinary differential equations for human and mosquito with saturated incidence function. The stability of
the system was analyzed for the Malaria-Free Equilibrium (MFE) through the reproduction number R0 which
was obtained using the next generation matrix method. The MFE is locally asymptotical stable if R0 < 1 and
unstable otherwise. Moreover, our sensitivity analysis shows that the most effective parameter is, a, mosquito
biting rate and the less effective one is αh, human progression rate. Our numerical simulations show that,
reducing the biting rate of mosquitoes will reduce the number of exposed humans as well as infected individuals
and increase the number of treated individuals. This can be achieved by increasing the proportion of antibodies.
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1 Introduction

According to [1], Malaria is a life-threatening
disease caused by parasites that are transmitted
to people through the bites of infected female
Anopheles mosquitoes. It is preventable and
curable. In 2016, there were an estimated
216 million cases of malaria in 91 countries,
an increase of 5 million cases over 2015.
Malaria deaths reached 445000 in 2016. The
total funding for malaria control and elimination
reached an estimated US 2.7 billion in 2015.
Nearly half of the world’s population is at risk
of the malaria disease with most of the malaria
cases and deaths occurring in the sub-saharan
Africa. The female infected mosquitoes carry
a parasite called Plasmodium. The mosquitoes
take the blood meal from human which is needed
for their egg production and such blood meals are
the link between the human and the mosquito
host in the parasite life [2]. There are four
common species of plasmodium that cause
malaria in humans which include;Plasmodium
falciparum, Plasmodium vivax, Plasmodium
malariae, and Plasmodium ovale. Recently,
some human cases of malaria have also occurred
with Plasmodium knowlesi, which is a species
that infects animals. Among the species,
Plasmodium falciparum is the most deadly and
accounts for 80 percent of malaria cases and 90
percent of death [3, 4].

The use of mathematical modeling has played a
unique role in comparing the effects of control
strategies, used individually or in packages
[5]. It can also be used to project how
infectious diseases progress, to show the likely
outcome of an epidemic, and help inform public
health interventions [6]. Understanding the
epidemiology of emerging and re-emerging of
infectious diseases in a population produces a
healthy environment for living. Mathematical
models are used in likening, designing,
implementing, evaluating and optimizing several
detection, prevention and control plans [7].

Mathematical modelling of malaria has flourished
since the days of Ross [8], who was the first to

model the dynamics of malaria transmission and
Macdonald [9, 10, 11] who expounded on Ross’s
work, introducing the theory of superinfection.
In the work of Chitnis et al. [5], they perform
the sensitivity analysis on a mathematical
model of malaria transmission to determine the
relative importance of the model parameters to
disease transmission and prevalence. They also
studied the sensitivity indices of the reproduction
number and the endemic equilibrium point to
the parameters at the baseline value. In a
Ph.D. dissertation, Chitnis [12] described a
compartmental model for malaria transmission,
based on a model by Nqwa and Shun [13].
He defined a reproductive number, R0, as the
expected number of secondary cases that one
infected individual would cause through the
duration of the infectious period. Also he showed
the existence and stability of the disease free and
endemic equilibrium points. He also computed
the sensitivity indices of R0 and the endemic
equilibrium to the parameters in the model.

There has been a high incidence and prevalence
of malaria in the last few decades due
to increasing parasite drug-resistance and
mosquito insecticide-resistance.This calls for a
comparative knowledge of the effectiveness and
efficacy of different control strategies which are
useful and cost-effective in the malaria control
programs. It is from this background that we
developed a vector-host mathematical model for
the transmission dynamics of malaria to examine
the sensitive parameters that play vital roles in
the dynamical spread and control of the disease.
The paper is organized as follows: In Section 2,
we describe the formulation of the model. Section
3 is devoted for the analysis of the model; the
basic reproduction number is also computed.
The stability of the disease free equilibrium is
investigated as well as the existence of the
endemic equilibrium. Section 4 has the sensitivity
analysis of the basic reproduction number.
Section 5 is devoted for the numerical simulations
. The conclusion is discussed in Section 6.
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2 Mathematical Model

2.1 Model description
The total population size, Nh, of the human
population is sub-divided into five classes namely
Susceptible human,Sh, Exposed human, Eh,
Infected human, Ih, Treated human, Th, and
Recovered human, Rh, so that

Nh = Sh + Eh + Ih + Th +Rh (2.1)

The mosquitoes population Nm is also sub-
divided into three classes namely Susceptible
mosquitoes Sm, Exposed mosquitoes Em and
Infected mosquitoes Im, so that

Nm = Sm + Em + Im (2.2)

We assume that susceptible human population
increases by birth or immigration at the rate Λh,
human can die at any stage by natural causes
and mosquitoes do not recover from infection.
Also the infected humans after treatment move
from infected to the treatment class for treatment.
With a biting rate of a, there is an infection from
the infected human to a susceptible mosquito at
a rate of βhm. The recovered humans becomes
susceptible to the disease after they have been
fully recovered at a rate ρ. The susceptible
human population is reduced by a natural death
rate of µ. The class Eh of exposed humans is
generated after the mosquito bites a susceptible
human at a rate a. At this stage, individuals do
not show any signs and symptoms of malaria.
The exposed human class is reduced by a rate
αh, which is the human progression rate from
the exposed human to the Infected human class
and also by a natural death rate of µ. When the

exposed humans start showing signs of malaria,
they leave the expose class and join the infected
class at a rate of αh. After treatment, a rate
γ, leaves the infected class to join the treated
class. The infected class is further decreased by
a disease induced death rate δh and a natural
death rate of µ. A rate σ leaves the treatment
class to the recovery class after they have fully
recovered. The class is further decreased by a
natural death rate of µ. A class of recovered
human, Rh, is generated when the infected
human respond fully to the treatment given to
them. There is a natural death rate of µ. Also
a rate ρ of the recovered humans joins the
susceptible class again.

In the case of the mosquitoes, there is
a recruitment of Λm, into the susceptible
class. With a biting rate of a, the infected
mosquito transfer the plasmodium parasite to
the susceptible human at a rate of βmh. The
susceptible mosquitoes also decreases by a
natural death rate of η. A class of exposed
mosquito is generated after they have bitten an
infected human. A rate αm leaves the exposed
class of mosquitoes to the infected class of
mosquitoes. There is a natural death rate of η.
After the mosquitoes leaves the exposed class,
a class of Infected mosquitoes is formed. A rate
αm leaves the expose class to join the infected
class. The infected mosquitoes are reduced by a
disease induce and natural death rate of δm and
η respectively.

With the above formulations and assumptions,
we have the following system of differential
equations:



dSh

dt
= Λh −

aβhmShIm

1 + vhIm
+ ρRh − µSh,

dEh

dt
=

aβhmShIm

1 + vhIm
− (αh + µ)Eh,

dIh

dt
= αhEh − (γ + µ+ δh)Ih,

dTh

dt
= γIh − (µ+ σ)Th,

dRh

dt
= σTh − (µ+ ρ)Rh,

dSm

dt
= Λm −

aβmhSmIh

1 + vmIh
− ηSm,

dEm

dt
=

aβmhSmIh

1 + vmIh
− (η + αm)Em,

dIm

dt
= αmEm − (η + δm)Im,

(2.3)
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With the initial conditions: Sh(0) > 0,Eh(0) ≥ 0,Ih(0) ≥ 0,Th(0) ≥ 0, Rh(0) ≥ 0, Sm(0) > 0,
Em(0) ≥ 0, Im(0) ≥ 0.

3 Model Analysis

3.1 Positivity and boundedness of the solutions

Since the model (2.3) characterizes interaction between host (human) and vector (mosquito) populations,
it is important to state that all the model variables and parameters are non-negative with respect
to time, thus t ≥ 0. The system (2.3) will be considered in the epidemiologically- feasible region
Ω = Ωh × Ωm ⊂ R5

+ × R3
+ with,

Ωh = {Sh, Eh, Ih, Th, Rh ∈ R5
+ : Nh ≤ Λh

µ
}, (3.1)

and
Ωm = {Sm, Em, Im ∈ R3

+ : Nm ≤ Λm

η
}, (3.2)

It can be shown that the region Ω is a positively invariant set and global attractive of the system
(2.3), this means any trajectory indicated any where in the non-negative region R8

+ of the phase space
ultimately enters the feasible region Ω and remains in Ω thereafter.

Lemma 3.1. The region

Ωh = {Sh, Eh, Ih, Th, Rh, Sm, Em, Im ∈ R8
+ : Nh ≤ Λh

µ
,Nm ≤ Λm

η
},

is positively invariant region for the model (2.3)

Proof.
dNh
dt

= Λh − µNh − δhIh,
dNh
dt

≤ Λh − µNh,

limt−→∞ Nh(t) ≤ Λh
µ
,

(3.3)

dNm
dt

= Λm − ηNm − δmIm,
dNm
dt

≤ Λm − ηNm,
limt−→∞ Nm(t) ≤ Λm

η
,

(3.4)

3.2 Reproduction number and existence of equilibrium

The malaria-free equilibrium (MFE) is a point at which the population is free from the malaria disease.
The MFE of the system (2.3) is denoted by P0 and is given by
P0 = (Sh0, Eh0, Ih0, Th0, Rh0, Sm0, Em0, Im0) = (Sh0, 0, 0, 0, 0, Sm0, 0, 0) = (Λh

µ
, 0, 0, 0, 0, Λm

η
, 0, 0)

Let

F =


aβhmShIm
1+vmIm

0
aβmhSmIh
1+vmIh

0

 , V =


(αh + µ)Eh

−αhEh + (γ + µ+ δh)Ih
(η + αm)Em

−αmEm + (η + δm)Im

 .
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by differentiating F and V partially with respect to: Eh, Ih, Em and Im at MFE P0, we get,

f = D[F(P0)] =


0 0 0

aβhmΛh
µ

0 0 0 0

0 aβmhΛm

η
0 0

0 0 0 0

 , v = D[V(P0)] =


αh + µ 0 0 0
−αh γ + µ+ δh 0 0
0 0 η + αm 0
0 0 −αm η + δm



fv−1 =


0 0 0

aβhmΛh
µ

0 0 0 0

0 aβmhΛm

η
0 0

0 0 0 0




1
(αh+µ)

0 0 0
αh

(αh+µ)(γ+µ+δh)
1

(γ+µ+δh)
0 0

0 0 (η + αm) 0
0 0 αm

(η+αm)(η+δm)
1

(η+αm)

 .

=


0 0 aβhmΛhαm

µ(η+αm)(η+δm)
aβhmΛh
(η+δm)

0 0 0 0
aβmhΛmαh

η(αh+µ)(γ+µ+δh)
aβmhΛm

η(γ+µ+δh)
0 0

0 0 0 0


Then R0, is given by spectral radius of fv−1 which is denoted by ρ(fv−1) and defined as:

R0 = ρ(fv−1) =

√
a2βhmβmhΛhΛmαhαm

µη(αh + µ)(γ + µ+ δh)(η + αm)(η + δm)
, (3.5)

3.2.1 Stability of the Malaria-Free Equilibrium

In this subsection, we investigate the stability of the MFE P0, by evaluating the Jacobian matrix of
system (2.3) at P0 = (Λh

µ
, 0, 0, 0, 0, Λm

η
, 0, 0) and obtained

J(P0) =

−µ 0 0 0 ρ 0 0 −aβhmΛh
µ

0 −(αh + µ) 0 0 0 0 0 aβhmΛh
µ

0 αh −(γ + µ+ δh) 0 0 0 0 0
0 0 γ −(µ+ σ) 0 0 0 0
0 0 0 σ −(µ+ ρ) 0 0 0

0 0 −aβmhΛm

η
0 0 −η 0 0

0 0 aβmhΛm

η
0 0 0 −(αm + η) 0

0 0 0 0 0 0 αm −(δm + η)


It is clear that λ1 = −µ,λ2 = −η , λ3 = −(µ + σ), λ4 = −(µ + ρ) are negative eigenvalues and the
sign of the other eigenvalues can be determined by the equation

G(λ) = c4λ
4 + c3λ

3 + c2λ
2 + c1λ+ c0 = 0 (3.6)

where:
c4 = 1,

c3 = k1 + k2 + k5 + k6,

c2 = k1k2 + k1k5 + k1k6 + k2k5 + k2k6 + k5k6,

c1 = k1k2k5 + k1k2k6 + k1k5k6 + k2k5k6,

c0 = k1k2k5k6(1−R2
0),

5



Osman et al.; JSRR, 22(3); 1-10, 2019; Article no.JSRR.46131

such that: k1 = (αh + µ), k2 = (γ + µ+ δh), k3 = (µ+ σ), k4 = (µ+ ρ), k5 = (αm + η),
k6 = (δm + η). Clearly it can be seen that all the roots of equation (3.6) have negative real parts, by
applying the Routh-Hurwitz Criterion if and only if the factors ci, are positive for i = 0, 1, 2, 3, 4 and the
determinants Di > 0, for i = 1, 2, 3, 4. From (3.6) clearly c1 > 0, c2 > 0, c3 > 0, c4 > 0. Moreover,if
R0 < 1 then c0 > 0. Also

D1 = c3 > 0, D2 =

∣∣∣∣c3 c4
c1 c2

∣∣∣∣ > 0, D3 =

∣∣∣∣∣∣
c3 c4 c0
c1 c2 c3
0 c0 c1

∣∣∣∣∣∣ > 0, D4 =

∣∣∣∣∣∣∣∣
c3 c4 0 0
c1 c2 c3 c4
0 c0 c1 c2
0 0 0 c0

∣∣∣∣∣∣∣∣ > 0, (3.7)

Thus, all the eigenvalues of J(P0) have negative real parts whenever R0 < 1, and P0 is said to be
locally asymptotically stable. However, if R0 > 1 then c0 < 0 and by Descartes rule of signs [14, 15],
there exist exactly one sign change in c4, c3, c2, c1, c0 of factors of the equation (3.6). So, there is one
eigenvalue with non-negative real part then the MFE P0 is unstable when R0 > 1, which indicates an
existence of an endemic equilibrium.

Theorem 3.2. System (2.3) has the MFE point P0 if R0 < 1,which is locally asymptotically stable and
unstable if R0 > 1.

4 Sensitivity Analysis

Table 1: Description and values of parameters of the model (2.3).

Parameter Parameter Description Value References
Λh Human recruitment rate 0.0250 Assumed
Λm Mosquito recruitment rate 0.035 Assumed
vh Proportion of antibody produced by human 0.29 Assumed
vm Proportion of antibody produced by mosquito 0.21 Assumed
γ treatment rate of the infectious individual 0.14 Assumed
µ Human natural death rate 4.74× 10−5 Assumed
δh Disease induced death rate of human 0.001 [14]
δm Disease induced death rate of mosquito 0.01 [14]
αh Human progression rate from Eh to Ih 0.08333 [15]
αm Mosquito progression rate from Em to Im 0.48 [15]
σ Recovery rate through the treatment 3.5× 10−3 [16]

βhm Transmission rate from infected human to susceptible mosquito 0.48 [16]
βmh Transmission rate from infected mosquito to susceptible human 0.048 [16]
a Mosquito biting rate 0.33 [17]
η Mosquito natural death rate 0.1 [17]
ρ Loss of immunity rate 2.74× 10−3 [17]

Sensitivity indices permit us to measure the proportional change in a state variable when a
parameter changes. Normally the sensitivity analysis of the model is determined by using the partial
derivatives of the outcome with respect to it’s parameters.
Definition: The normalized forward sensitivity of index for a variable y, which depends on a parameter
q, denoted by γy

q is defined as

γy
q =

∂y

∂q
× q

y
,

We consider that change of the state variable parallels with a change in the value of R0 in our model
simulation. Since the reproduction number is a function of the parameters, then we can evaluate
the relative sensitivity of R0 for every parameter that R0 depends on.The parameters µ and η are
simply not considered because they are natural death rate of humans and mosquitoes respectively.
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In order to determine how to reduce human morbidness due to malaria it is better to know the
relative importance of different factors that changes the spread of the disease. The parameters
are listed in Table 2 in such a way that they begin from the most sensitive to the least sensitive
one.The signs on sensitivity indices indicate the direction of the change for each parameter.The most
sensitive parameter is a the mosquitoes biting rate and the least sensitive one is αh, which is human
progression rate from Eh to Ih.

(i) if we decrease the value of a from 0.33 to 0.25 and the other parameter values remain the same
then the value of R0 is reduces from 0.0137 to 0.0104.
(ii) if we reduce the value of βhm from 0.48 to 0.35 and the other parameters remain the same then
the value of R0 reduces from 0.0137 to 0.01168
(iii) if we reduce the value of βhm from 0.048 to 0.035 and the other parameters remains the same
then the value of R0 reduces from 0.0137 to 0.0117

Table 2: Sensitivity indices of R0 to parameters for model (2.3)

Parameter Sensitivity index
1 a +1
2 βhm +0.5
3 βmh +0.5
4 Λh +0.5
5 Λm +0.5
6 µ -0.5
7 γ -0.4963
8 αm + 0.0862
9 δm -0.0455
10 δh -0.0035
11 αh 0.000028435

5 Numerical Simulations
In this section, we study the numerical simulations of our model. The graphs in Fig 1 show the
simulations of malaria model showing the varying effect of the ratio of antibodies, vh on the human
population. Fig 1(a) indicates that an increase in the antibody in human greatly increases the number
of susceptible human. In the case of the exposed human, increasing the antibody sharply reduces
the number of exposed human as depicted in Fig.1(b). Also, an increase in the antibody increases
the number of infected humans and vice verse, this is shown in Fig 1(c). Fig 1(d) shows that when the
antibody is increased, it doesn’t show any initial changes until after day 10, after which the number of
treated humans reduces drastically. Fig 2 shows the simulation of malaria model showing the varying
effect of the ratio of antibody vm on the mosquitoes population Sm. From Fig 2(a), we clearly see that
an increase or decrease in the antibody does not affect the susceptible mosquitoes. However, Fig
2(b) indicates that the number of magnitude of the exposed mosquitoes decreases as the antibody
increases. Thus, increasing the antibodies reduces the expose mosquito population depicted in Fig
2(c). In general, it is observed that an increase in antibody greatly reduces the infected mosquitoes.

Fig.3 shows the simulations of malaria model showing the effect of vector biting rate a on the susceptible
and infected human. It is clearly seen from Fig 3(a) that as the biting rate of mosquitoes increases,
the population of the susceptible humans reduces drastically. On the other hand, as the biting rate a
of the mosquitoes increase, the number of infected human also increases.
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Figure 1: Simulations of malaria model (2.3) showing the varying effect of the ratio of antibody vh
on the human population Sh(t) Fig 1 (a),Eh(t) Fig 1 (b) Ih(t) Fig 1 (c) and Th(t) Fig 1 (d). when
R0 < 1 . All Parameter values used are listed in Table 1
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Figure 2: Simulations of malaria model (2.3) showing the varying effect of the ratio of antibody vm
on the mosquitoes population Sm(t) Fig (a),Em(t) Fig 2 (b) and Im(t) Fig 2 (c), when R0 < 1 . All
Parameter values used are listed in Table 1
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Figure 3: Simulations of malaria model (2.3) showing the effect of vector biting rate a on the human
population Sh(t) Fig 3 (a) and infected human Ih(t). Fig 3 (b), as a function of time. Parameter values
used are listed in Table 1

6 Conclusion

The sensitivity analysis of the ordinary differential
equations model of malaria transmission with
saturated incidence function was studied. Basic
properties of the model were discussed. The
malaria-free equilibrium, P0 was shown to be
locally asymptotically stable whenever R0 <
1. Our sensitivity analysis shows that the
most effective parameter is, a, mosquito biting
rate and the less effective one is, αh, human
progression rate from Eh to Ih. Furthermore, our
numerical simulations showed that increasing
the antibodies is the best strategy to reduce
the number of exposed humans and infected
individuals, which increases the number of
treated humans and controlls the disease.
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