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ABSTRACT 
 

Precise estimation of rainfall is a crucial and challenging task in environmental science. It involves 
the use of advanced and powerful models to forecast non-linear and dynamic changes in rainfall. 
Deep learning, a recently developed method for handling vast amounts of data and resolving 
complex problems, has proven to be an effective tool for rainfall forecasting. In this study, we 
applied various deep learning models such as Multilayer Perceptron (MLP), Long Short-Term 
Memory (LSTM), Bidirectional LSTM (Bi-LSTM), Stacked LSTM, Gated Recurrent Units (GRUs), 
and a traditional model called Autoregressive Integrated Moving Average (ARIMA), to forecast 
monthly rainfall data (mm) for three regions of Karnataka: Coastal Karnataka, North Interior 
Karnataka (NIK), and South Interior Karnataka (SIK). Trend analysis was conducted using the 
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Mann-Kendall trend test (MK test) and the Seasonal Mann-Kendall trend test, along with Sen's 
Slope Estimator, to determine trends and slope magnitudes. The results showed that deep learning 
models perform better than traditional methods in forecasting rainfall. The performance of different 
models was evaluated using forecasting evaluation criteria and found that the LSTM model 
performed best for Coastal Karnataka, with an RMSE value of 149.45, while the Bi-LSTM model 
performed best for NIK, with an RMSE value of 32.57, and the Stacked LSTM model performed 
best for SIK, with an RMSE value of 45.33. Therefore, deep learning models can be effectively used 
to predict rainfall data with greater accuracy. 
 

 
Keywords: Autoregressive Integrated Moving Average (ARIMA); Bidirectional LSTM (Bi-LSTM); 

Gated Recurrent Unit (GRU); Long Short-Term Memory (LSTM); Multilayer Perceptron 
(MLP); Stacked LSTM. 

 

1. INTRODUCTION 
 
Agriculture is a critical component of India's well-
being, heavily reliant on precipitation for success. 
Efficient water resource management can also 
be supported through agricultural practices. Past 
precipitation data has enabled farmers to better 
manage their crops, contributing to the country's 
economic growth. Accurate rainfall prediction is 
essential for preventing flooding, which can lead 
to significant property damage and loss of life. 
Due to fluctuations in timing and quantity, 
precipitation forecasting is challenging for 
meteorologists. Researchers from various 
disciplines, such as weather data mining, 
environmental machine learning, functional 
hydrology, and numerical forecasting, are 
working to develop predictive models for 
accurate rainfall forecasting. The capacity to infer 
past and future predictions are crucial in 
addressing these issues. Precipitation involves 
numerous sub-processes, making it difficult to 
predict accurately on a global scale. Climate 
forecasting is essential for all countries 
worldwide and is provided by meteorological 
departments, offering significant benefits and 
services. Early identification of severe weather 
conditions through precise precipitation 
forecasting can aid in mitigating natural disaster 
injuries and damages. In India, numerous rainfall 
prediction methods are available, with traditional 
models limited to linear data analysis. Machine 
learning models can capture nonlinearity in data, 
but feature extraction issues can pose 
challenges. Deep learning models, a subset of 
machine learning, can overcome these issues 
and adapt to the data to capture volatility better, 
resulting in improved results. Therefore, the 
forecasting of rainfall is being carried out for 
three Karnataka subdivisions, namely Coastal 
Karnataka, North Interior Karnataka, and South 
Interior Karnataka. 
 

Traditional time series models, like ARIMA and 
ARMA, rely on a linear relationship between the 
data, which isn't always the case in practical 
applications. Machine learning (ML) models, in 
contrast, have become viable alternatives for 
time series forecasting due to their flexible 
operational designs and strong self-learning 
capabilities [1,2]. “In several empirical studies, it 
has been demonstrated that ML approaches, 
such as artificial neural networks (ANN), 
generalised regression neural networks (GRNN), 
support vector regression (SVR), random forest 
(RF), and gradient boosting machine (GBM), 
perform better than time series models in 
predicting a variety of time series” [3]. 
 

Since shallow machine learning heavily relies on 
clearly defined features, a successful feature 
extraction process is essential to the model's 
performance [4]. Manual feature design is a 
tedious task that needs domain knowledge, 
making it labor-intensive, time-consuming, and 
rigid. Deep learning (DL) overcomes this 
restriction by utilising cutting-edge architecture to 
automatically and labor-efficiently extract 
discriminative feature representations [5]. DL is 
therefore better equipped to deal with big, noisy, 
and unstructured data. Many different deep 
learning (DL) techniques are employed, including 
the multilayer perceptron (MLP), long short-term 
memory (LSTM), bidirectional LSTM (Bi-LSTM), 
stacked LSTM, gated recurrent units (GRU), and 
convolutional neural networks (CNN). 
 

Time series data can be handled by DL models 
in a scalable manner, and they have 
demonstrated high accuracy in a number of 
application domains. Utilizing hourly 
meteorological data from numerous locations, DL 
models like LSTM have been used to forecast 
weather variables like temperature, wind speed, 
and humidity for 24 and 72 hours [6]. Other 
studies have employed multi-task CNN to predict 
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monthly rainfall in Bhutan's capital using different 
DL models, including BLSTM-GRU, which 
outperformed other ML and DL models [7], and 
forecast short-term precipitation in China [8]. 
Aswin et al. (2018) applied “Long Short-Term 
Memory (LSTM) and Convolutional Neural 
Network (CNN) for rainfall data”. “Prediction of 
short-term rainfall using Gated Recurrent Unit 
(GRU)” by Sun et al. (2021). Khan and Maity 
(2020) along with SVR applied Multilayer 
Perceptron (MLP) and CNN for daily rainfall 
prediction. 
 
Based on these findings, we propose using DL-
based rainfall prediction models to improve the 
accuracy of rainfall forecasting for three sub-
divisions of Karnataka, India. 
 

2. MATERIALS AND METHODS 
 

2.1 To Analyse the Trend in Monthly 
Rainfall Data 

 
Trend analysis is a commonly used tool to detect 
changes in climatic and rainfall time-series data. 
With the predicted changes in global climate, 
trend detection in rainfall data has received 
significant attention. However, climatic variability, 
as reflected in rainfall data, can negatively impact 
rainfall trends. Parametric tests are more 
commonly used for trend analysis, assuming 
independent and normally distributed data. 
However, real-world data may not always meet 
these assumptions. To address this, more 
powerful nonparametric tests are used, 
especially for rainfall data, as they do not require 
the strict assumptions of parametric tests and 
can tolerate the effect of outliers in the data. 
Several nonparametric tests exist in the literature 
to analyze trends, with Mann-Kendall's (M-K) test 
being one of the most widely used tests for 
estimating trends in rainfall data. The M-K test 
procedure involves: 
 
2.1.1 Mann-Kendall (M-K) test  
 
The Mann-Kendall trend (M-K) test is a non-
parametric test, in contrast to the parametric 
method of trend analysis. It is considered the 
most suitable test for identifying trends in rainfall 
data. One of the benefits of using the non-
parametric M-K test is that it relies on the sign of 
differences rather than the values of random 
variables, making the trend less influenced by 
fluctuations and extreme rainfall values. This is 
especially important in the analysis of weather 

parameters, which are highly prone to 
fluctuations [9]. 
 
  : The rainfall data don't show any monotonic 
trends. 
  : The rainfall data show monotonic trends 
(either decreasing or increasing). 
 
The Mann-Kendall statistics ‘ ’ is given as  
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and   ,    are the sequential data values and for 

all       with   ≠   and   is the length of the 
rainfall data set. 
 
2.1.2 Seasonal Mann-Kendall test (Seasonal 

M-K test) 
 
The Seasonal Mann-Kendall (M-K) test is a 
nonparametric statistical test that evaluates 
seasonal data for monotonic trends. It was 
developed by Hirsch, Smith, & Slack in the 1980s 
and has become widely used in environmental 
studies. The term "monotonic" refers to a 
consistent upward or downward trend, while 
"seasonal" data pertains to data collected for 
periods that exhibit trends that can be either 
upward or downward. These periods can include 
seasons such as spring and summer, as well as 
time periods such as hours, days, or months. 
 

The Seasonal M-K test is a subset of the Mann-
Kendall Trend Test and is used when the data is 
seasonal. In cases where the data is not 
seasonal, the Mann-Kendall Trend Test should 
be used instead. The Seasonal M-K test involves 
conducting independent Mann-Kendall trend 
tests on each of the m seasons, where m is the 
number of seasons. The comparison is made 
only between data from the same season [10]. 
The overall Seasonal M-K test statistic is 
obtained by adding the Kendall S statistics from 
each season. 
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2.1.3 Sen’s slope estimator 
 
Sen's slope estimator is a commonly used 
method for estimating the magnitude of a trend. It 
is a nonparametric linear slope estimator that is 
particularly effective with monotonic data. Unlike 
linear regression, Sen's slope estimator is less 
affected by data errors, outliers, or missing data. 
The method involves calculating the slope      of 
each pair of data using the following formula: 
 

   
       

   
                                           

 
where    and    are considered as data values at 

time   and   (  >  ) correspondingly. The median 

of these   values of    is represented as Sen’s 
estimator of the slope, which is given as:  
 

      

    
 
            

 

 
   

 
     

 
              

                

 
In the end,      is computed by a two-sided test 

at 100 (1 −  ) % confidence interval and then a 
true slope can be obtained by this non-
parametric test. Positive value of      indicates 
an upward or increasing trend and a negative 

value of      gives a downward or decreasing 
trend in the time-series [11].  

 
2.2 Forecasting of Monthly Rainfall Data 
 
2.2.1 Autoregressive Integrated Moving 

Average (ARIMA) 

 
ARIMA model is a generalization of ARMA 
models which incorporate a wide range of non-
stationary timeseries by suitable order of 
differencing. The simplest example of a non-
stationary process which reduces to a stationary 
one after differencing is 'Random Walk.' A 
process      is said to follow an Integrated ARMA 

model, denoted by ARIMA        , if      
          is ARMA      . The model is written 
as: 

 
                                                         

 
where,          

      indicates white noise, 
               

       
  and 

              
        

 . The 

integration parameter   is a nonnegative              
integer. 

There are four major stages of ARIMA model 
building. These are identification, estimation, 
validation, and forecasting. A detailed discussion 
on various aspects of this approach is given in 
Box et al. [12]. 
 
2.2.2 Multi-layer perceptron (MLP) 
 
An artificial neural network (ANN) is a 
computational model inspired by the brain's 
information processing and analysis capabilities, 
capable of solving a wide range of non-linear 
problems [13]. ANN provides several 
advantages, such as the ability to perform 
parallel processing, learning from experience 
(datasets), and being capable of approximating 
complex functions with high accuracy without the 
need for reprogramming. ANN finds wide 
application in classification and forecasting 
problems. Multi-layer Perceptron (MLP) is the 
most popular ANN model used for time-series 
forecasting problems [14]. The MLP structure 
consists of an input layer, hidden layer, and 
output layer [15]), each containing several 
processing units or neurons connected via 
directed links with individual weights. 
 
The mathematical equations of the neural 
network are presented by Eq. (7). 
 

          

  

   

         

  

   

                                

 

        
          if    
   if otherwise 

              

 
where   and    are the input and output of the 
network, respectively.    and    are the size of 

the output layer and hidden layer.     are the 

weights of connection between input and hidden 
layer,     is the weights of connection between 

hidden and output layer.   is the Exponential 
Linear Unit (ELU) [16] presented by Eq. (8) (in its 
general form, when    ). It becomes the 

Rectified Linear Unit (ReLU) when    . 
 
2.2.3 Long short-term memory (LSTM) 
 
Recurrent Neural Networks (RNNs) incorporate 
Long Short-Term Memory (LSTM), a type of 
neural network that addresses the challenge of 
long-term RNN dependencies, where the RNN 
can only forecast based on current data and is 
unable to access data stored in long-term 
memory. LSTM was developed by Hochreiter 
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and Schmidhuber in 1997. RNNs become less 
effective as the time gap between relevant data 
points increases. LSTM solves the problem of 
gradient vanishing and forgetting that typically 
occurs in traditional RNNs. It has the ability to 
retain data for an extended period and can also 
learn to make a one-shot multi-step prediction, 
which is useful for time-series prediction [17]. An 
LSTM neural network unit includes four gates: an 
input gate, a cell state, a forgotten gate, and an 
output gate. 
 

Structure of LSTM 
 

The LSTM has a chain structure that includes 
four neural networks and various memory blocks 
known as cells. 
 

The cells store information, and the gates 
perform memory manipulations. There are three 
gates –  
 

1. Forget Gate: The forget gate deletes 
information that is no longer useful in the 
cell state. Two inputs,    (at-the-time input) 

and      (previous cell output), are fed into 
the gate and multiplied with weight 
matrices before bias is added. The result is 
fed into an activation function, which 
produces a binary output. If the output for a 
specific cell state is 0, the information is 
lost; if the output is 1, the information is 
saved for future use. 

2. Input gate: The input gate is responsible 
for adding useful information to the cell 
state. First, the information is regulated 
using the sigmoid function, and the values 

to be remembered are filtered using the 
     and    inputs, similar to the forget 
gate. The tanh function is then used to 
generate a vector with values ranging from 
-1 to +1 that contains all of the possible 
values from      and   . Finally, the vector 
and regulated values are multiplied to 
obtain useful information. 

3. Output gate: The output gate is in charge 
of extracting useful information from the 
current cell state and presenting it as 
output. To begin, a vector is created by 
applying the tanh function to the cell. The 
information is then regulated using the 
sigmoid function and filtered by the values 
to be remembered via      and    inputs. 
Finally, the vector and regulated values are 
multiplied and sent as output and input to 
the next cell. 

 

The main calculation process is described as 
follows 
 

    (                                           
 

                          
                                                        

 

  =            g (               
                                                                                             
 

                          
                                                        

 

                                                                            
 

  =φ(                                                                   

 

 
 

Fig. 1. The long short-term memory (LSTM) architecture 
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where    represent the memory cell, w and b are 
the weight matrices and the bias vectors, 
respectively,    denotes the input data at a 

present time step  ,   is the sigmoid function, 
and φ is the output activation function. 
 

2.2.4 Bi-directional long short-term memory 
(Bi-LSTM) 

 

Bidirectional long-short term memory (Bi-LSTM) 
is a neural network architecture that processes 
input data in both directions, either forward (past 
to future) or backward (future to past), allowing it 
to capture information from both the past and 
future contexts. Bi-LSTM extends the traditional 
LSTM by adding a second LSTM network that 
processes the input in reverse order. This results 
in two sets of hidden states, one for each 
direction, which is concatenated to form the final 
output. Bi-LSTM is especially useful for tasks 
where both past and future context is important, 
such as natural language processing, speech 
recognition, and image processing [18]. 
 

In the above diagram, we can see the flow of 
information from backward and forward layers. 
Bi-LSTM is usually employed where the 
sequence-to-sequence tasks are needed. This 
kind of network can be used in text classification, 
speech recognition and forecasting models.  
 

The process can be described as: 
 

                                                                   

 

    =LSTM (                                                           
 

           
           

                                    

 
where (.) represents LSTM network,        

and 

      
) represent the weight of the forward and 

backward LSTM layer at time t, respectively. by 

denotes the bias of the output layer,  (.) 
represents the activation function. 
 
2.2.5 Stacked LSTM 
 
The Long Short-Term Memory (LSTM) model is 
a type of neural network consisting of a single 
hidden layer of LSTM units, followed by a 
conventional output layer. To increase the depth 
of the model, a model extension called Stacked 
LSTM was introduced. Stacked LSTM has 
multiple hidden LSTM layers, each with multiple 
memory cells. The depth of the neural network is 
increased by the addition of multiple LSTM 
layers, making it a deep learning technique. The 
success of deep learning in tackling difficult 
prediction problems is often attributed to the 
depth of the network. Stacked LSTM has 
emerged as a reliable technique for solving 
difficult sequence prediction problems. In a 
stacked LSTM architecture, each LSTM layer 
sends a sequence of values to the layer below, 
rather than a single value. The output of each 
time step is an input for all subsequent time 
steps [19]. 

 
 

Fig. 2. The Bidirectional long short-term memory (LSTM) architecture 
 

 
 

Fig. 3. The stacked long short-term memory (LSTM) architecture 
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Fig. 4. The Gated Recurrent Unit (GRU) architecture 
 
2.2.6 Gated recurrent unit (GRU)  
 
The gated recurrent unit (GRU) is a gating 
mechanism used in recurrent neural networks 
(RNNs) to address the vanishing gradient 
problem that can arise in traditional RNNs. The 
GRU has a similar design to the long short-term 
memory (LSTM) unit, but it does not have an 
output gate. GRUs employ an update gate and a 
reset gate to regulate the flow of information, 
which helps to solve the vanishing gradient 
problem. The update gate controls the inflow of 
information into memory, while the reset gate 
controls the outflow of information from memory. 
While GRUs and LSTMs have similar designs 
and can produce comparable results in some 
cases, GRUs are particularly useful for 
addressing the vanishing gradient problem and 
are more effective than LSTMs with smaller 
datasets. GRUs have been used in various 
applications, including polyphonic music 
modeling, speech signal processing, handwriting 
recognition, and time series forecasting. 
 
The process can be described as: 
 

     (   
       

                                   
 

     (   
        

                                   
 

                                             
 

                                                
 
where    

,    
,   denote the weight matrices for 

the corresponding connected input vector.   
 
, 

  
 
,   represent the weight matrices of the 

previous time step, and       and   are bias. The 

  denotes the sigmoid function,    denotes the 

reset gate,    denotes the update gate, and     
denotes the candidate hidden layer [20-23]. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Analysis of Trend in Month-wise 
Rainfall Data  

 
The trend in monthly, seasonal, and yearly 
rainfall data from three meteorological 
subdivisions of Karnataka was analysed using 
non-parametric tests, specifically the Mann-
Kendall (M-K) and Seasonal Mann-Kendall tests. 
The M-K and seasonal M-K test statistics (Tau) 
values were used to determine the presence of a 
monotonic trend in the rainfall data. A positive 

Tau ( ) value indicates an upward or increasing 
trend, while a negative value suggests a 
downward or decreasing trend. The magnitude of 
the trend was calculated using Sen's slope 

estimator (    ), with values close to zero 
indicating a minimal change in rainfall rate, while 
greater positive or negative values denote a 
significant increase or decrease in rainfall rate, 
respectively. 
 
Before trend analysis, the significance of the 
serial correlation coefficient was assessed to 
confirm the presence of serial correlation in all 
rainfall data series. Kendall’s Tau ( ) test 
revealed substantial serial correlation in the 
majority of the rainfall data series. To remove the 
impact of serial correlation on the acceptance or 

rejection of Kendall Tau ( ), the Seasonal M-K 
test for variance correction was employed. 
Python (3.9.0) and R (3.6.1) was used for the 
rainfall trend analysis. 
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3.1.1 Coastal Karnataka 
 
Table 1 shows that there is no significant 
monotonic trend in the monthly rainfall data. The 
M-K test statistic for February is significant at a 1 
percent level of significance, while the remaining 
months (January, March, April, May, June, July, 
August, September, October, November, and 
December) are not significant. The presence of 
serial correlation between consecutive months 
may have contributed to this result. The seasonal 
M-K test statistic value indicates a significant 
monotonic increasing trend for January, 
February, March, and April at a 1 percent level of 
significance, and for July at a 5 percent level of 
significance. The value is not significant for the 
remaining months of May, June, August, 
September, October, November, and December. 
The positive sign of the seasonal M-K                         

value for January, February, March, and April 
indicates an upward trend, while the negative 
sign for July suggests a downward trend. No 
significant trend is observed for the remaining 
months. 
 
3.1.2 NIK subdivision 
 
For the NIK subdivision, the M-K test statistic 
values in Table 2 indicate that there is no 
monotonic trend, as they were non-significant at 
the 5 percent level of significance for all months. 
This lack of trend may be attributed to the serial 
correlation present in the rainfall data from month 
to month. 
 
Regarding the seasonal M-K test, January, 
March, April, and August months' test statistic 
values were significant at a 5 percent level of 

 
Table 1. M-K and Seasonal M-K test statistic (Tau) and Sen’s slope estimate for Coastal 

subdivision for monthly rainfall (mm) data 
 

Period M-K test Seasonal M-K test Sen’s 
slope Tau p-value Trend Tau p-value Trend 

January 0.15
NS 

0.09 No trend 0.15** <0.01 Increasing 0.00 
February 0.27** 0.01 Increasing 0.27** <0.01 Increasing 0.0003 
March 0.15

NS
 0.09 No trend 0.15* 0.03 Increasing 0.02 

April 0.12
NS

 0.17 No trend 0.12** <0.01 Increasing 0.02 
May -0.03

NS
 0.75 No trend -0.03 

NS
 0.48 No trend -0.29 

June 0.07
 NS

 0.43 No trend 0.07
NS 

0.24 No trend 1.10 
July -0.15

NS
 0.08 No trend -0.15** 0.00 Decreasing -3.43 

August -0.003
NS

 0.97 No trend -0.0
NS

 0.94 No trend -0.03 
September 0.03

NS
 0.74 No trend 0.03 NS 0.56 No trend 0.36 

October 0.06
NS

 0.52 No trend 0.06
NS 

0.23 No trend 0.42 
November 0.04

NS
 0.70 No trend 0.04

NS 
0.30 No trend 0.14 

December -0.05
NS

 0.60 No trend -0.05 
NS

 0.52 No trend -0.01 
NS: Non-Significant, *Significant at 5% level of significance, **Significant at 1% level of significance 

 
Table 2. M-K and Seasonal M-K test statistic (Tau) and Sen’s slope estimate for NIK 

subdivision for monthly rainfall (mm) data 
 

Period M-K test Seasonal M-K test Sen’s 
slope Tau p-value Trend Tau p-value Trend 

January 0.10
NS

 0.26 No Trend 0.10* 0.01 Increasing 0.00 
February 0.12

NS
 0.18 No Trend 0.12** <0.01 Increasing 0.0008 

March 0.04
NS

 0.64 No Trend 0.04* 0.05 Increasing 0.01 
April -0.05

NS
 0.61 No Trend -0.05* 0.02 Decreasing -0.06 

May -0.07
NS

 0.44 No Trend -0.07** 0.01 Decreasing -0.17 
June 0.03

NS
 0.77 No Trend 0.03

NS
 0.05 No trend 0.05 

July -0.13
NS

 0.15 No Trend -0.13** <0.01 Decreasing -0.50 
August 0.06

NS
 0.50 No Trend 0.06* 0.01 Increasing 0.20 

September -0.09
NS

 0.32 No Trend -0.09** <0.01 Decreasing -0.50 
October -0.05

NS
 0.57 No Trend -0.05

NS
 0.17 No trend -0.26 

November -0.04
NS

 0.66 No Trend -0.04
NS

 0.34 No trend -0.04 
December 0.04

NS
 0.64 No Trend 0.04

NS
 0.41 No trend 0.001 

NS: Non-Significant, *Significant at 5% level of significance, **Significant at 1% level of significance 
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significance, while February, May, July, and 
September months' values were significant at a 1 
percent level of significance, with the remaining 
months being non-significant. The positive sign 
of the seasonal M-K value indicated a monotonic 
increasing trend for January, February, March, 
and August, while the negative sign indicated a 
monotonic decreasing trend for April, May, July, 
and September. There was no monotonic trend 
observed for the remaining months of June, 
October, November, and December. 
 

3.1.3 SIK subdivision 
 

The monthly rainfall data for the SIK subdivision 
does not exhibit a consistent trend, as indicated 
by the non-significant Mann-Kendall (M-K) test 
statistic values in Table 3, with a 5 percent level 
of significance. However, the Seasonal M-K test 
results indicate a significant increasing trend in 
rainfall during February, March, April, June, and 
August, with statistical significance at the 1 
percent or 5 percent level. In contrast, there is no 
statistically significant trend observed in the 
remaining months of January, May, July, 
September, October, November, and December. 
The positive Seasonal M-K test values for the 
months with a significant trend suggest a 
consistent increase in monthly rainfall over time. 
 

3.2 Forecasting of Rainfall for Three 
Subdivisions 

 

3.2.1 Data description 
 

This study utilizes monthly rainfall data 
(measured in millimeters) from three subdivisions 
of Karnataka, India, including Coastal Karnataka, 

North Interior Karnataka (NIK), and South Interior 
Karnataka (SIK). The data were obtained from 
the public repository "data.world" and cover the 
period from January 1901 to December 2015, 
with a total of 1381 observations for each series. 
Visual inspection of the time plots in Figs. 5, 6, 
and 7 suggests that all three series exhibit non-
stationarity, which is confirmed through statistical 
tests for stationarity presented in Table 4. To 
construct and evaluate the models, the series is 
divided into training and testing sets, with the 
training set comprising 1105 months of 
observations used for model development and 
in-sample prediction, while the remaining 276 
observations are reserved for post-sample 
prediction testing. 
 
This study aims to identify the most effective 
deep learning model for forecasting rainfall and 
compare its performance to that of other 
statistical forecasting models, including ARIMA. 
The ARIMA modeling is implemented using R 
version 3.6.1 software, while the deep learning 
models are developed using Python 3.9.0 with 
the Keras and Tensorflow libraries. The software 
is executed on a system with the following 
specifications: a Ryzen 7 5700U CPU with a 
clock speed of 1.8 GHz, 8.0 GB of RAM, and 
AMD Radeon Graphics running the Windows 11 
operating system. 

 
3.2.2 Test for stationarity 

 
A time series is considered stationary if it exhibits 
constant mean and variance over time. The 
Augmented Dickey-Fuller (ADF) test is 
commonly used to assess the stationarity of a

 
Table 3. M-K and Seasonal M-K test statistic (Tau) and Sen’s slope estimate for SIK 

subdivision for monthly rainfall (mm) data 
 

Period M-K test Seasonal M-K test Sen’s 
slope Tau p-value Trend Tau p-value Trend 

January 0.02
NS 

0.15 No trend 0.02
NS

 0.05 No trend 0.00 
February 0.08

NS
 0.39 No trend 0.08** 0.01 Increasing 0.003 

March 0.15
NS

 0.08 No trend 0.15** 0.01 Increasing 0.08 
April 0.09

NS
 0.32 No trend 0.09* 0.02 Increasing 0.16 

May 0.06
NS

 0.47 No trend 0.06
NS

 0.31 No trend 0.16 
June 0.17

NS
 0.06 No trend 0.17** <0.01 Increasing 0.37 

July 0.03
NS

 0.25 No trend 0.03
NS

 0.16 No trend 0.05 
August 0.15

NS
 0.10 No trend 0.15** <0.01 Increasing 0.56 

September -0.07
NS

 0.44 No trend -0.07
NS

 0.05 No trend -0.38 
October 0.02

NS
 0.86 No trend 0.02

NS
 0.70 No trend 0.08 

November -0.03
NS

 0.75 No trend -0.03
NS

 0.29 No trend -0.07 
December -0.04

NS
 0.65 No trend -0.04

NS
 0.41 No trend -0.03 

NS: Non-Significant, *Significant at 5% level of significance, **Significant at 1% level of significance 
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Fig. 5. Time plot of rainfall (mm) of Coastal Karnataka 
 

 
Fig. 6. Time plot of rainfall (mm) of North Interior Karnataka 

 

 
 

Fig. 7. Time plot of rainfall (mm) of South Interior Karnataka 
 

Table 4. Results for stationarity using ADF test 
 

Subdivisions of Karnataka Test Statistic p-value Remarks 

Coastal Karnataka -3.08 0.21 Non-stationary 
NIK -2.86 0.30 Non-stationary 
SIK -1.69 0.15 Non-stationary 
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data series. The null hypothesis of the ADF test 
is that the time series contains a unit root, 
indicating non-stationarity. The ADF statistic 
returns a negative value, with greater negative 
values indicating stronger evidence against the 
null hypothesis. The results of the ADF tests are 
presented in Table 4, confirming that all series 
under investigation exhibit non-stationarity. The 
tests were conducted using the adf.test function 
from the tseries package in the R software. 
 

3.2.3 Data pre-processing and normalisation 
 

Data pre-processing and normalisation of data 
series are required so that deep learning models 
can be fitted effectively and extrapolated without 
bias. The normalisation technique rescales a 
data series' values between 0 and 1 without 
altering its shape. The following equation is used 
to normalise both series: 
 

  
  

       
         

 

 

where     ,      and    are the minimum, 
maximum and observation at time  , respectively 

and   
  is the rescaled value. In python software, 

we have used Min-Max Scaler function of the 
Scikitlearn package for this purpose. 
 

3.2.4 Implementation of forecasting models 
 

Following the confirmation of non-stationarity and 
normalization of each series, the proposed 
models are developed and fitted as follows: The 
data is first pre-processed and normalized before 
being divided into training (80%) and testing 
(20%) sets. The training set is utilized for model 
construction, while the testing set is used to 
evaluate its performance. Each series is fitted 
individually using ARIMA, MLP, LSTM, Bi-LSTM, 
Stacked LSTM, and GRU models, and their 
performance is assessed using the Root Mean 
Square Error (RMSE) metric. The required model 
parameters and hyperparameters are detailed in 
Table 5 and Table 6. The model with the lowest 
RMSE value among all fitted models is deemed 
to perform better. 

The ARIMA model was fitted using the optimal 
combination of parameters as determined by 
Table 5. While this model can capture linear 
components in the data, it does not account for 
nonlinearity. Therefore, other nonlinear models 
were explored. 
 

After estimating the models, forecasts were 
generated for the testing data set. The RMSE 
was used to evaluate the effectiveness of rainfall 
predictions made by various models, including 
ARIMA, MLP, LSTM, Bi-LSTM, Stacked LSTM, 
and GRU. For Coastal Karnataka, NIK, and SIK, 
respectively, the LSTM, Bi-LSTM, and Stacked 
LSTM models produced lower RMSE values than 
other competing models. Among all the models, 
ARIMA had the highest RMSE, indicating that it 
was the least accurate model. 
 

Deep learning models are capable of sequence 
learning, enabling them to effectively capture the 
nonlinearity present in the rainfall dataset. 
Consequently, the LSTM, Bi-LSTM, and Stacked 
LSTM models were found to be the best-fitted 
models for Coastal Karnataka, NIK, and SIK, 
respectively. These models provide predicted 
values that are very close to the actual values, as 
shown in Table 7. 
 

Table 5. Parameters of ARIMA model 
 

Subdivisions of 
Karnataka 

p d q 

Coastal Karnataka 2 0 1 
NIK 2 1 1 
SIK 1 2 1 

 
Table 6. Hyperparameters used for all deep 

learning models 
 

Hyperparameters 

Activation function ReLU 
Optimizer Adam 
Loss function Mean Squared Error 
Batch size 10 
Epochs 100 

 
 

Table 7. Comparison of prediction performances of different models 
 

Sl. No. Models RMSE value 

Coastal Karnataka NIK SIK 

1 ARIMA 304.6457 47.69623 65.21994 
2 MLP 163.9448 33.55378 66.5592 
3 LSTM 149.4526 33.21547 46.47722 
4 Bi-LSTM 168.7255 32.57809 46.84162 
5 Stacked LSTM 158.7145 36.55438 45.3386 
6 GRU 162.826 32.8662 46.71207 
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3.3 Discussion 
 
The results of the comparison of different time 
series models on the testing dataset are reported 
in Table 7. From these results, it can be seen 
that the LSTM model performed better for 
Coastal Karnataka, while Bi-LSTM and stacked 
LSTM models performed better for NIK and SIK 
regions respectively, in terms of evaluation 
metrics of RMSE, indicating that the predicted 
values from these models are closer to the actual 
values than those from the other models for the 
respective regions. On the whole, these results 
suggest that the DL models are able to 
effectively capture the patterns and trends in the 
rainfall data and make more accurate predictions 
than the other traditional models considered in 
this study. This makes them a valuable tool for 
predicting future rainfall. The results from the 
present study are similar to that of Cramer et al., 
2017, Aswin et al., 2018 and Sun et al., 2021. 

 
4. CONCLUSION 
 
In this study, we compared the performance of 
deep learning models (LSTM, Bi-LSTM, Stacked 
LSTM, and GRU) with the traditional ARIMA 
model for modeling and forecasting monthly 
rainfall data in three subdivisions of Karnataka. 
Our results showed that deep learning models 
outperformed other models in capturing nonlinear 
relationships in the data. This can be attributed to 
their ability to model sequential and time series 
data effectively, but training these models 
requires expertise and time. These findings 
highlight the potential of deep learning models in 
predicting monthly rainfall data, and future 
research may explore the use of other models or 
additional meteorological variables to improve 
forecast accuracy. 
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