
Introduction 
Everyone knows original and basic emotions such as 
happiness, fear, anger, disgust, sadness and surprise. 
But neuroscientists and researchers have no consensus 
about the nature of emotions. There are 2 opinions about 
emotions: one approach considers emotions as general 
states of individuals and the other one knows emotions 
as physiological interactions.1 Imagine a person driving 
a car while another car approaches and causes him to 
deviate from the road. At first that individual probably 
experiences fear and anger. According to the first view, 
fear comes from the inference that one might be in anger 
and that anger is because of the driver who has just 
put him in danger. Thagard,1 Oately2 and Nussbaum3 
believe in the first approach. Oately demonstrated how 
original emotions have a strong relation with executing 
goals. In other words, people become happy while 
approaching their goals and sad when they fail. People 
become frightened when they experience trouble or 
feel threatened. Therefore, we can consider emotions a 
general representation of our problems.1 In contrast to 
the first view, the second approach emphasis on physical 
and physiological interactions. When someone causes 
an individual driving a car to deviate off the road, their 
heart rate, blood pressure and respiration rate increase. 
Feelings (like fear or anger, etc) originate from the brain’s 

responses to these physiological changes and not from 
the interpretation of the situation. James introduced 
this approach for the first time in 1884. Psychologically 
speaking, in terms of emotion classification there are 2 
basic theories: Plutchik’s theory and Ekman’s theory. 
The first theory classifies emotions into 2 different 
categories: basic emotions and secondary ones. These 
emotions are as follows: anticipation, joy, trust, sadness, 
fear, surprise, anger, disgust. Secondary emotions come 
from a combination of these elementary feelings. These 
emotions are as follows: love, optimism, aggressiveness, 
submission, contempt, awe, remorse and disapproval. 
Ekman’s theory is known as a discrete model. He 
introduced six basic emotions: fear, sadness, happiness, 
surprise, disgust, anger.4 After that, the number of 
these emotions increased to 15. James and Lange in the 
19th century introduced another theory. In this theory 
environmental variations cause physiological changes in 
our autonomous nervous system and consequently cause 
different emotions. On the other hand, physiological 
changes cause emotions. Therefore, researchers analyze 
signals and images related to these physiological changes 
in order to recognize feelings and classify emotions. 
However, physiological signals introduce some problems 
like noise, artifacts, etc. Another problem is that we 
cannot visually recognize emotions from physiological 
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signals and need computerized processes.5-11 Also, there 
are other factors which affect emotions, such as sex, age 
and race. Usually, researchers consider these parameters 
while studying emotions. Besides the discrete model of 
emotions, there is another model which Lang proposed 
and called valence-arousal model. In this model, valence 
and arousal values are assigned to each emotion. In other 
words, in this model emotions are a continuous spectrum 
of valence and arousal values and generally emotions are 
plotted in a 2D coordination called valence-arousal plane.

There are 4 important steps in emotion recognition 
systems: physiologic records, emotion stimulation, online 
or offline recognition and stimulated emotions and 
emotion models.

Physiologic Records 
Emotion status is reflected by physiological changes, 
which is why biological signals and images are recorded 
in order to recognize emotions. Some biological systems 
in the human body and their indexes are described as 
follows:
1-Cardiovascular system: electrocardiogram (ECG), heart 
rate variability (HRV), cardiac output, blood pressure, etc. 
2- Respiratory system: respiration rate, etc.
3- Muscular system: electromyogram (EMG) signals, etc.
4- Brain activity: EEG signals, etc.

Figure 1 shows some types of these signals. 
EEG signals due to their simplicity to analyze and 

good time and spatial resolution have become common 
and useful in most BCI applications such as emotion 
recognition. Also, EEG recording systems are cheap and 
accessible. Previous studies show that by recording and 
processing EEG signals we can achieve very good results 
in terms of emotion classification. So a decision was made 
to explain and review some previous studies related to 
emotion classification through EEG signals.

Emotion Stimulation 
The way emotions are evoked plays an important role in 
emotion recognition systems. Some believe that video 
clips can stimulate human emotions the best while others 

find music or memories the most effective way. What is 
clear is that the stronger the stimulation is the richer the 
database will be. By using good and strong stimulation, 
emotion recognition is more likely to be performed with 
better results and higher accuracy. There are some types 
of stimulation as follow: pictures,12-43 video clips,44-60 
music,61-76 memories,77 self-induction,78,80,81 environment 
elicitation like light, humidity and temperature,79 games,82 
etc. 

Some ways of eliciting emotions and some induced 
emotions are listed in Table 1.

Offline or Online Recognition 
In some studies, emotion recognition on the spot is 
really important such as monitoring patients while 
taking medicine, so online methods are of importance 
in those applications. For example, Iacoviello et al81 an 
effective, general and complete classification method 
for EEG signals was introduced. In this study, self-
induction was used as emotion elicitation. Wavelet 
transform (WT), principle component analysis (PCA) 
and support vector machine (SVM) were used to process 
and classify EEG signals. Also, Sourina et al83 introduced 
an online emotion recognition study which used spatial 
time fractal to characterize brain states. A vital issue in 
online recognition systems is that processing methods 
must be fast and precise. Fractal transform is one of these 
methods that was used in several related studies. Sourina 
et al86 determined brain responses using fractal transform 
following stimulation by music. Also they calculated 
Renyi entropy as well. Liu et al55 calculated Higuchi’s 
fractal dimension. They processed EEG signals while 
participants were listening to music. 

The other type of emotion recognition systems is 
offline. For example, Zhang and Li85 recognized positive 
and negative emotions using neuro fuzzy method offline. 
In this study, an unsupervised clustering method and 
adaptive neuro fuzzy inference system (ANFIS) were 
used. Clustering was used in early steps for creating 
primary information related to emotions. Emotions were 
elicited by International Affective Picture System (IAPS) 

Figure 1. Types of Physiologic Records.
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images. In this study, EEG signals and visual information 
were recorded. 

Emotion Models
Another problem in emotion recognition studies is the 
number of elicited emotions and the emotion model. 
Some studies, according to discrete model of emotions, 
consider a specific number of emotions and others 
according to valence-arousal model suppose more 
emotions. For example, Murugappan et al45,48,52 studied 
anger, fear, surprise, happiness emotions according to 
discrete emotion model, while Koelstra et al,51 Koelstra 
and Patras,53 and Hidalgo-Munoz et al24 studied emotions 
according to the valence-arousal model. 

Public Databases
There are some public emotion databases which can be 
used by researchers for free. The advantage of public 
databases is that researchers do not need any laboratory 
and specific recording systems, appropriate condition, 
shield environment, etc. Also, they do not need 
participants and they will have reliable and free databases. 
In this section, some available databases are described. 

Table 1. Different Kinds of Emotion Stimulation

Stimulation Emotion Ref.

Pictures Valence-arousal model 19

Negative and positive emotions 54

Happiness, fear, neutral, sadness 27

Valence-arousal model 17

Happiness, fear, neutral, sadness, anger 43

Negative and positive emotions 42

Negative and positive emotions 97

Video clips Happiness, sadness, disgust, amusement, fear, 
surprise, anxiety, anger, neutral

96

Valence-arousal model 44

Happiness, disgust, fear, surprise, anger, neutral 45

Valence-arousal model 57

Valence-arousal model 58

Music Valence-arousal model 61

Happiness, sadness, fear, surprise, anger 62

Positive and negative emotions 63

DEAP Database
This multimodal database was recorded by Koelstra et 
al,51 in 2 laboratories (Geneva and Twente) in 2012. In 
this database, 40 video clips were used to elicit emotions 
according to valence arousal model. Thirty-two individ-
uals participated and 32-channel EEG signals, 4-channel 
EMGs, 4 EOG signals, 2-channel GSR signal, 2 ERG sig-
nals, temperature in a single channel, single channel res-
piration rate and 1-channel blood volume pressure were 
recorded. Five indexes including arousal, valence, like/
dislike, dominance and familiarity were reported by each 
participant. Raw and preprocessed signals from all partic-
ipants and also face videos from 22 of them are available 
in this dataset. More detailed descriptions can be found in 
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/index.
html. Figure 2 shows selected emotional videos in valence 
arousal plane.

SJTU Emotion EEG Dataset (SEED)
Zheng and Lu98 recorded SJTU emotion EEG Dataset. 
This dataset contains EEG signals from 15 individuals 
while watching Chinese video clips. Figure 3 shows a 
participant while watching clips. Emotions were consid-
ered as positive, negative and natural. Participants filled a 
questionnaire after watching videos. EEGs were recorded 
in three sessions to evaluate stability of patterns and neu-
ral signatures among participants and sessions, the inter-
val between 2 sessions was one or more weeks. EEG sig-
nals were recorded according to the 10-20 international 
standard system. Raw and preprocessed signals and also 
face videos are available. For more details refer to http://
bcmi.sjtu.edu.cn/~seed/index.html. 

MAHNOB-HCI database
Soleymani et al96 recorded MAHNOB-HCI database, a 
multimodal database in 2012. This database included 
several multimodal signals, 32 channels EEG signals, 3 
channels ECG signals, 2 channels ERG, 2 channels GSR, 
respiration amplitude and skin temperature signals. Mul-
timodal signals were recorded from 27 individuals while 
watching video clips and pictures. This database included 

Figure 2. Valence and Arousal Values of Video Clips in DEAP Database. Included video clips are shown in green.51
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2 separate sessions, in the first session video clips were 
displayed and participants immediately filled a ques-
tionnaire about their feelings after watching clips. In the 
second session, short videos and pictures were displayed 
once with right and wrong labels and once without labels. 
Their comments about their feelings were evaluated. Sig-
nals were recorded according to the 10-20 international 
standard system. For more details about this database re-
fer to https://mahnob-db.eu/hci-tagging/. 
These databases have been used in several studies, Table 2 
shows a brief description and references which have used 
biological signals in these databases so far. 

Previous Emotion Studies
Emotion and Normal Cases
In this section we review previous studies which evaluate 
emotions in normal individuals. Weinreich et al26 
measured variations of alpha frequency band in frontal 
lobe from an oddball paradigm. Participants were asked 
to describe each image regardless of the emotion of the 
image. 16-channel EEG signals were recorded from 20 
female and 8 male participants.

Hidalgo-Munoz et al24 studied EEG signals of 26 
females while watching emotional images from IAPS. 
This study considered emotions according to the 
valence-arousal model. In the processing step, they used 
spectral turbulence (ST), a method which was inspired 
by ECG studies. Results show that the left temporal lobe 
has considerable activity during emotion elicitation. 
Koelstra and Patras53 recorded EEG signals from several 
participants according to the valence-arousal model. 
They showed video clips in order to evoke emotions. 
The details are described in section 1.5 and Table 2. In 
this study, power spectral density of EEG sub-bands 
was calculated and active units (AU) were detected 
from face videos of participants. Then a combination of 
features was applied. Hidden Markov Model (HMM) and 
GentleBoost were used as the classifiers. Results showed 
that the combination of face videos and EEG signals 
improved the accuracy.

Lee et al54 proposed an emotion recognition system 
based on fuzzy logic. They used video clips to elicit 
emotions and recorded EEG signals from 12 participants. 
They extracted dynamic features from emotional states 
and 3D fuzzy GIST and 3D fuzzy tensor to extract brain 

features in a semantic level. Independent component 
analysis (ICA) was used to remove artifacts. ANFIS was 
used to classify emotions, results showed the performance 
of the proposed method. 

Haung et al60 presented a multimodal approach to 
recognize emotions. In this study EEG signals from 
MAHNOB-HCI database were used. Discriminant 
power spectrum and difference power spectrum were 
extracted from EEG signals of 27 participants. Local 
binary patterns (LBP) were extracted from videos of 
participants’ faces. Then fusion in features and decisions 
were applied. Finally, SVM and KNN were used as 
classifiers. Results showed that using multimodal data, 
gives better recognition results. 

Bozhkov et al31 considered valence-arousal model for 
emotions and recorded EEG signals from 26 females 
viewing IAPS pictures. They used Echo state networks 
(ESN) to cluster and classify positive and negative 
emotions. They obtained the desired results and 
demonstrated the performance of their proposed method. 

Mavratzakis et al36 evaluated event related potentials 
(ERPs) of 27 individuals during watching pictures. In this 
study, three picture databases were used as stimuli: KDEF 
(Karolinska Directed Emotional Faces Database), RAFD 
(Radboud Faces Database) and IAPS. After statistical 
analysis of ERP components, results showed that 
emotions did not influence on P1 component. Also, N170 
increased during watching emotional pictures but N100 
was not sensitive to emotion changes. Moreover, early 
posterior negativity (EPN) increased during watching 
fearful images. 

Emotions and Neural Disorders
An interesting part of emotion studies is studies which 
evaluate psychological diseases and disorders through 
emotion recognition. In this section, studies about some 
disorders such as Parkinson’s disorder (PD), autism 
spectrum disorder (ASD), schizophrenia, depression, 
etc. were reviewed. Yuvaraja et al88 extracted higher 
order spectral features from EEG signals and evaluated 
emotion changes between PD patients and normal 
individuals. EEG signals were recorded from 20 PD 
patients and 20 normal participants while watching video 
clips. Samples were classified into six basic emotions 
(sadness, happiness, fear, anger, surprise and disgust) 

Figure 3. SJTU Emotion EEG Dataset (SEED) setup.98
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through SVM classifier. Results showed PD patients 
have weaker emotions in comparison with normal 
individuals, especially for negative emotions. Yeung et 
al90 examined cortical connectivity of autistic children 
while watching KDEF face pictures and compared 
them with normal children. EEG signals of 18 autistic 
children and 18 normal children were recorded during 
stimuli and then analyzed using theta coherence index 
(cortical connectivity index). This study showed that 
autistic children have deficiency in emotion recognition. 
Also, there was no theta coherence modulation while 
normal children had theta coherence modulation in the 
right frontal lobe in response to emotional faces. Theta 
coherence modulation in response to emotions is related 
to social deficiency of autistic children. 

Schizophrenia can be detected by emotion stimulation. 
Brennan  et al89 examined this hypothesis by processing 
ERP signals. This study used international BRAINnet 
database, including 108 schizophrenic patients and 108 
normal cases. All individuals watched emotional pictures 
including sadness, fear, anger, disgust and happiness and 
simultaneously ERPs were recorded in conscious and 
non-conscious conditions. Then significant differences 
among 2 groups were achieved through analysis of 
variance (ANOVA). Results showed that schizophrenic 
patients had shorter brain activity, about 70 ms. Also, 
schizophrenic patients in response to disgust had positive 
shifts after 70 ms and normal people had negative shifts in 
response to fear and anger in comparison with happiness 
in temporal-occipital regions. 

Croft et al95 detected emotion deficiency in Huntington’s 
patients via ERPs. In this study, EEG signals from 11 
Huntington’s patients and 11 normal individuals were 
recorded while participants expressed emotions such as 
scramble, neutral, happiness, anger and disgust. Results 
showed lower accuracies for negative emotions such as 
disgust, neutral and anger due to decreased functionality. 

Psychogenic non-epileptic seizures (PNES) are 
unknown among epileptic seizures. Recent studies 
showed that PNES patients have impairments in control of 
their emotions. Urbanek et al94 evaluated this hypothesis. 
In this study, EEG signals from 56 patients and 68 normal 
individuals during emotion stimulation were recorded. 
Results demonstrated that these patients have weaker 
emotions, more negative feelings and stronger control on 
their emotions than normal people.

Tseng et al evaluated phase synchrony and EEG 
activation oscillation in Asperger syndrome (AS) 
patients while they were recognizing emotions from 
face images.40 AS group included 10 individuals and the 
normal group consisted of 10 individuals. Emotions were 
stimulated by pictures. Results demonstrated that AS 
group had no determined N400 in response to pictures, 
also, they showed lower synchrony in temporal and 
parietal-occipital lobes at delta/theta and weaker phase 
synchronization in separate regions of brain. 

Akar et al examined brain dynamics of major 
depressive disorder (MDD) patients during stimulation 
using positive and negative emotions.72 They used music 
as stimulation. Three different situations including noisy 
environment, relaxation and listening to music were 
considered. EEG signals from 15 MDD patients and 15 
normal people were recorded and analyzed using non-
linear methods. Some kinds of complexity measures 
such as Lempel-Ziv, Kolmogorov were calculated and 
then significant differences were evaluated by ANOVA 
measure. This study demonstrated that MDD patients 
have more complex EEG signals in parietal and frontal 
lobes comparing to normal people. Also EEG signals of 
these individuals had lower complexity in frontal and 
parietal lobes while listening to music compared to other 
situations. 

Li et al evaluated large scale functional brain 
networks of depressed people and normal ones using 
graph theory.34 Participants’ emotions were elicited 
by Ekman pictures including positive, negative and 
neutral emotions. Simultaneously, EEG signals  were 
recorded from 16 depressed and 14 normal participants. 
In this study, EEG signals were processed by extracting 
coherence in frequency bands such as delta, theta, alpha, 
beta and gamma. Results showed that for depressed 
participants total coherence values in gamma band 
were higher than normal people. Also, total coherence 
among normal participants for negative emotions was 
higher in gamma band. Moreover, there were abnormal 
networks in prefrontal and occipital lobes for depressed 
participants. Table 3 describes recent studies related to 
emotion recognition.

Conclusion
In this paper, we reviewed several emotion recognition 
studies from EEG signals. First, we stated some emotion 

Table 2. Description of Public Databases

Name Participants Signals Stimulation Emotion Supplementary Files Ref. 

DEAP 32
32 EEGs, 4 EMGs, 4 
EOGs, 1 GSR, 1 RR, 1 
Plethya, 1 Tempb

40 video clips
40 emotions according to 
valence arousal model

Face videos 44,51,57,58,87

MAHNOB-HCI 30
16 EEGs, 3 ECGs, 2 
GSRs, 1 RR, 1 Temp

20 Video clips and 
pictures

Happiness, Sadness, disgust, 
amusement, fear, surprise, 
anxiety, anger, neutral 

Face videos (522), eye 
gaze

53,60,96

SEED 15 15 EEGs 15 video clips
Positive, neutral and 
negative emotions

Face videos 59,98 

a Plethysmograph, b Temperature.
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Table 3. Recent Emotion Recognition and Evaluation Studies From EEGs

Emotions Stimulation Recorded signals Method Results Ref 

Positive and negative valence Music EEG signals from 5 women Correlation dimension, ANOVA Lower correlation dimension while listening to music 69

Valence arousal model Video clips MAHNOB-HCI

PSD sub bands (EEGs), AU (face 
pictures) detection, fusion in 
feature and decision levels, HMM, 
GentleBoost

Better results using 2 modalities (EEG signals and face pictures) 53

rSASM (recalibrated Speech Affective 
Space Model), 12-PAC (12-Point Affective 
Circumplex)

Pictures (RAFD database) EEG signals from 5 children
KSDE (Kernel Density Estimation), 
MFCC (Mel-Frequency Cepstral 
Coefficients), MLP

MFCC-rSASM has lower MSE vs MFCC-12PAC and KSDE-12-PAC 
was lower than KSDE-rSASM

27 

Happiness, sadness Self-induction EEG signals Signal velocity Sadness has faster velocity than happiness 78

Three levels of arousal
Pictures (IAPS database) and 
transcutaneous electric nerve 
stimulation (TENS) 

EEGs, SC, HR and acoustic 
startle amplitude from 30 
individuals

Frontal alpha asymmetry
Relative activity in left frontal lobe plays an important role in emotion 
controlling 

25 

Valence-arousal model Pictures (IAPS database) EEGs from 26 females ST, SVM-RFE Left temporal lobe activated during emotional stimulation 24 

Neutral, erotic, aversive, pleasant, 
unpleasant

Pictures (IAPS database) EEGs from 73 individuals Spectral analysis, ANOVA Increase of upper alpha power in central lobe 92

Neutral, unpleasant Pictures (IAPS database) EEGs from 18 individuals
Dynamic theta in occipital region, 
spectral analysis, ANOVA

2 peaks in early theta power increase 93

Negative and positive Video clips EEGs from 12 individuals
3D fuzzy GIST, 3D fuzzy tensor, FCM, 
ICA, STFT, ANFIS

Effectiveness of 3D fuzzy, derived EEG features and ANFIS 54

Very happy, somewhat happy, neutral, 
sadness, anger, fear

Pictures EEGs from 29 individuals
ERP amplitude, delay interval theta 
power, ANOVA

Higher N170 component and higher theta power in the delay in 
response to negative facial expression

39

Pleasant and unpleasant
Direct and indirect lightening 
environment

EEGs from 28 individuals
Spectral analysis, t-test, Pearson’s 
correlation coefficient

-Correlation between pleasant score and theta power in F8 channel-
theta frequency band as emotion biomarker in different lightening 
conditions 

79

Neutral, anger, happiness, disgust Picture (KDEF database)
EEGs from 11 Huntington’s 
disease patients and 11 normal 
individuals

ERP analysis, statistical analysis
Lower emotion recognition accuracy for HD patients due to 
decreased emotional function (neutral, disgust and anger)

95

Pleasantness, tension, happiness, anger, 
fear, energy, sadness, tenderness

Music EEGs from 31 individuals ICA, connectivity, asymmetry, PCA Correlation between nervous and evoked emotions 70

Positive, negative, low level and high level Video clips EEGs from 36 individuals Higuchi fractal dimension, MANOVA
More complexity for EEGs following (while) high level emotion 
stimulation 

55

Anger, neutral, happiness Pictures EEGs from 31 children FFT, EEG asymmetry, ANOVA
Attention decreased in children with right temporal-anterior EEG 
asymmetry 

38

Negative, positive, neutral
Pictures (Ekman emotion 
database)

EEGs from 16 depressed patients 
and 14 normal individuals

Sub band coherence, graph theory
-Higher coherence of depressed patients at gamma frequency band
-Higher coherence of normal individual in negative stimulation 
compared to positive 

34

Neutral, happiness, anger,
Pictures (Ekman emotion 
database)

EEGs from 10 Asperger’s 
syndrome (AS) patients and 10 
normal individuals

ERP and ERSP analysis, phase 
synchronization, MANOVA

The AS group had no visible N400 component and lower delta/theta 
synchronization (350–450ms post-stimulus onset) in the temporal 
and occipital–parietal regions

40
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Pleasantness, tension, happiness, anger, 
fear, energy, sadness, tenderness

Music EEGs from 31 individuals
Acoustic features (music), frequency 
band power and asymmetry (EEGs),
PCA, regression model, correlation

Prediction of emotions using neural activity of individuals 71

4 emotions from valence arousal model Pictures (IAPS database) EEGs 
ICA, modified kernel density estimation 
(KDE), artificial neural networks

Improvement in recognition using modified KDE 28 

Negative and positive Pictures (IAPS database) EEGs from 26 women
Amplitude and latency of ERPs, Neural 
networks, logistic regression, naïve 
Bayes, linear discriminant analysis

P300 and P200 from parietal and occipital regions play role in 
emotion recognition

29

Negative and positive Music 
EEGs from 15 MDD patients and 
15 normal individuals

 Katz fractal dimension, Higuchi 
fractal dimension, Shannon entropy, 
Lempel-Ziv complexity, Kolmogorov 
complexity (KC), ANOVA

More EEG complexity in parietal and frontal of MDDs 72

Valence arousal emotions Pictures (IAPS database)
EEGs, HR, SCR, Near-Infrared 
Spectroscopy (NIRS) from 20 
subjects

EEG power, correlation analysis, 
ANOVA

Significant difference in right and anterior region following emotion 
stimulation (negative valence vs arousal)

30

Disgust
Self- induction (remembering 
unpleasant smell)

EEGs from 10 men WT, PCA, SVM Right hemisphere and T8 play important role in emotion recognition 81

Unpleasantness
Self- induction (remembering 
unpleasant smell)

EEG from C4, P4, T8 and P8 
from 28 individuals

STFT (gamma and alpha frequency 
bands), similarity measure

Sensitivity of right hemisphere in gamma frequency band following 
negative emotion stimulation

80

Relaxation Music (Tanpura drone) EEGs from 10 individuals
WT, Empirical Mode Decomposition 
(EMD), Multifractal detrended 
fluctuation analysis (MFDFA)

Music affect alpha and theta frequency bands 73

Fear, happiness, neutral
Pictures (MacBrain Face 
Stimulus set) 

EEGs from 47 individuals ERP analysis, ANOVA Sensitivity of N170 component during emotion stimulation 37 

Happiness, anger, fear, sadness, disgust, 
surprise

Video clips
Forehead EEGs, SC, BVP, RR 
from 25 individuals

Adaptive weighted linear model, KNN, 
SVM,

EEG forehead signals are sufficient for emotion recognition 56

Very happiness, somewhat happiness, 
neutral, sadness, anger, fear

Pictures (MacBrain Face 
Stimulus set)

EEGs from 38 schizophrenic 
patients and 42 normal 
individuals

ERP analysis, ANOVA
Higher N170 for 2 groups at negative emotions vs neutral but higher 
theta power in schizophrenic patients in delay interval

41

Reappraisal and suppression of negative 
emotion

Pictures (IAPS database) EEGs from 102 individuals
Frontal alpha asymmetry (FAA), 
ANOVA

Greater relative activity in left frontal as reappraisal negative 
emotions vs normal view of negative emotions

33

Valence arousal emotions Pictures (IAPS database) EEGs from 28 individuals WT, ANOVA, Reduction of frontal alpha oscillation following higher arousal 26

Valence arousal emotions Video clips
EEGs from 32 individuals (DEAP 
database)

Bispectrum analysis, LS-SVM, ANN 
(Linear and RBF kernels)

Sub bands had better results than EEGs 57

Valence arousal emotions Video clips DEAP database
Minimum-Redundancy-Maximum-
Relevance(mRMR), SVM, genetic 
algorithm-SVM

Preference of mRMR vs SVM and GA-SVM 58

Relaxation Music
EEGs from F3 and F4 from 10 
men

WT, fractal dimension
Increased alpha fractal dimension following listening to sad and 
happy songs

74

Table 1. Continued
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Table 1. Continued

Happiness, sadness, anger, love Music EEGs from 30 individuals
Time and spectral features, WT, SVM, 
KNN, Multilayer perceptron (MLP),

Higher accuracy using fusion of features and MLP classifier 75

Negative, neutral and positive Video clips
EEGs from 15 subjects (SEED 
database) 

Domain adaptation, subspace 
alignment auto-encoder (SAAE)

Effectiveness of SAAE in emotion recognition 59

Valence arousal emotions Video clips
EEGs and face expression from 
30 subjects (MAHNOB-HCI 
database)

multimodal approach, Spectral power 
difference, discriminant spectral power, 
KNN, ANOVA, fusion

Effectiveness of multimodal approach 60

Happiness, fear, neutral Pictures (Ekman database)
EEG and Transcranial magnetic 
stimulation (TMS) from 12 
individuals

P1-N1 component, ANOVA
P1-N1 component reduction in medial prefrontal cortex, first P1-N1 
in right hemisphere and second in left

35 

Happiness, fear, neutral
Pictures (RAFD, KDEF, IAPS, 
GAPED1 databases)

EEGs and facial 
electromyography (fEMG) from 
27 individuals

ERP, statistical analysis
-Emotion had no effect on P1 component
-Increase of N170 amplitude with emotion stimulation

36

Happiness, sadness, neutral Music EEGs from 19 individuals
Multi variation autoregressive model, 
connectivity, SVM

-Positive correlation between valence and frontal inter-hemispheric 
stream 
-Negative correlation between bilateral connectivity in parietal lobe

76

Negative Pictures (IAPS database) EEGs from 25 individuals ERP analysis, statistical analysis
P3 component amplitude was modulated following emotional 
stimulation in parietal lobe

32 

Valence arousal emotions Pictures (IAPS database) EEGs from 26 subjects
Clustering and classification by Echo 
state networks (ESN)

Echo state networks were better than classic networks 31 

Valence arousal emotions Video clips
EEG signals and peripheral 
signals (DEAP database)

Spectral and time features, multiple-
fusion-layer based ensemble classifier 
of stacked auto-encoder (MESAE)

Preference of MESAE method vs classic methods 87 

Fear, anger Pictures (POFA2)
High density EEGs from 11 
young women and 11 adult 
women

ERP analysis (N170 modulation), brain 
source localization

Change in N170 amplitude, age effects on emotions 91

Anger, happiness, neutral
Pictures (Ekman and Friesen’s 
collection)

EEG signals from 46 subjects 
Event-related spectral perturbations, 
ANOVA

-Theta synchronization lead to increase in low depression patients 
following happiness stimulation
-Increase of theta synchronization due to anger elicitation in high 
depression patients 

99

Sad, disgust, fear, anger, happy and 
surprise

Pictures (IAPS database), 
sounds (IADS3 database), 
video clips

EEG signals from 57 subjects
Wavelet packet transform, Hurst 
exponent, K-nearest Neighbour (KNN), 
Probabilistic Neural Network (PNN)

-Beta as the most discriminative frequency band
-Sad emotion had higher accuracy (82.32%)

100

Valence arousal emotions Video clips
EEG signals and peripheral 
signals (DEAP database)

Reinforcement online learning (ROL), 
support vector regression (SVR), least 
square regression (LS)

Reduced learning time for Least square reinforcement learning and 
support vector reinforcement learning methods 

101

Positive and negative Pictures (GAPED database) EEG signals from 12 subjects 

Power Spectral Density (PSD), Signal 
Power (SP) and Common Spatial 
Pattern (CSP), Linear Discrimination 
Analysis (LDA)

Higher accuracy for finding better electrode arrangement 102

1Geneva affective picture database = GAPED, 2 Pictures of Facial Affect=POFA, 3Inter-national Affective Digitized Sounds = IADS.
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approaches and theories. Then we described different 
components of emotion recognition systems: different 
kinds of biologic measurements (EEG, ECG, etc) offline 
vs online recognition systems, different types of emotional 
stimulation, and the specific emotion models which have 
been used in studies (valence-arousal model and discrete 
model). Since EEG has become more and more common 
in emotion recognition applications in recent years, our 
main focus was on the subject of emotion recognition 
through EEG signals. So different papers and studies 
were reviewed in order to cover this issue. Attempts were 
also made to support recent, valid and reliable studies for 
young researchers who are interested in this field. 
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