
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: arushdi@kau.edu.sa; 
 
 
 

Journal of Energy Research and Reviews 
 
7(1): 29-42, 2021; Article no.JENRR.64839 
ISSN: 2581-8368 

                                    
 

 

 

Reliability Analysis of Boost Converters Connected 
to a Solar Panel Using a Markov Approach 

 
Rifqi Firmansyah Muktiadji1 and Ali Muhammad Rushdi1* 

 
1
Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589,  

Saudi Arabia. 
 

Authors’ contributions 
 

This work was carried out in collaboration between the two authors. Author RFM performed the 
analysis, solved the detailed example, wrote the first draft of the main text of the manuscript and 
initiated the literature search. Author AMR envisioned and designed the study, contributed to the 

symbolic and numerical analysis, checked the solution of the detailed example, managed and 
finalized the literature search, wrote the appendix and substantially edited and improved the entire 

manuscript. Both authors read and approved the final manuscript. 
 

Article Information 
 

DOI: 10.9734/JENRR/2021/v7i130182 
Editor(s): 

(1) Dr. Huan-Liang Tsai, Da-Yeh University, Taiwan. 
Reviewers: 

(1) Doston Khasanov Turayevich, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi 
(TUIT), Uzbekistan. 

(2) R. Sujatha, SSN College of Engineering, India. 
Complete Peer review History: http://www.sdiarticle4.com/review-history/64839 

 
 
 

Received 10 November 2020  
Accepted 16 January 2021 

Published 05 February 2021 

 
 

ABSTRACT 
 
In the past few decades, the energy shortage and global warming problems became a serious 
concern for humanity. To solve these problems, many countries have evolved renewable energy 
sources (RESs) such as solar, wind, hydro, tidal, geothermal, and biomass energy sources. Solar 
energy is usually harvested via a solar panel that is connected to a boost converter to supply the 
loads. The converter has a key role in the system, since it controls the voltage at the DC bus. If any 
accidental fault occurs in the converter, the solar panel cannot supply electricity to the loads. 
Therefore, reliability evaluation of the converter is usually warranted. In this study, reliability 
evaluation of boost converters connected to a solar panel is carried out using the Markov technique. 
This technique is widely employed to evaluate the reliability and availability of a system with fixed 
failure and repair rates. Using the Markov method, we found that the reliability of the typical specific 
converter considered is 0.9986 for  � = 1000 ℎ���� and that its life expectancy or Mean-Time-To-
Failure (MTTF) is 713247 ℎ����. 
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1. INTRODUCTION 
 

In the past few decades, the energy shortage and 
the global warming problems became a serious 
concern for all countries in the world. To solve 
these problems, many countries have evolved 
renewable energy sources (RESs) such as solar 
panels that generate electrical energy in DC form 
to replace conventional power generation. In 
order to supply loads such as digital devices and 
lighting systems, a solar panel should be 
connected to a DC/DC boost converter [1-3]. 
 

The boost converter has an important role in the 
system, namely, it is responsible for control of the 
voltage at the DC bus, which is necessary to 
mitigate any variation that takes place in the solar 
radiation input of the solar panel. If any accidental 
fault in the converter happens, the solar panel 
ceases to supply electricity to the loads. 
Therefore, evaluation of the reliability of the 
converter is needed to estimate its expected 
lifetime and this evaluation is an essential 
element of any adequate maintenance plan, since 
it is used for predicting the failure of any 
component of the converter and for proposing its 
replace/repair before its actual failure [4–7]. 
 

There have been several studies on the reliability 
analysis of a DC/DC boost converter in the 
literature [8, 9].  Arifujjaman [8] presented a 
reliability analysis of power-electronic converters 
for a grid that is connected to a permanent 
magnetic synchronous generator (PMSG) wind 
turbine. The reliability analysis in [9] has been 
carried out for a push-pull converter which is built 
to connect to a 125-W solar panel. Failure rates 
of a solar panel, capacitors and inverters utilized 
in a grid connected solar power system have 
been reported in [10]. 
 
We use this paper to present reliability analysis of 
boost converters connected to a solar panel using 
Markov modeling, which is a powerful technique 
used for reliability analysis of complex systems 
that undergo transitions among distinct states, 
and it is very useful in many practical situations 
such as smart microgrid energy management 
systems [11,12], solar farm generation [13], 
safety systems [14], and large systems [15-18]. 
Furthermore, the technique is widely employed to 
carry out reliability and availability evaluation of 
systems with fixed failure and repair rates [19]. 
 

The rest of this paper is structured as follows. 
The impact of parameters on the pertinent failure 

rates is outlined in Section 2. Section 3 describes 
the method used to evaluate the reliability of the 
boost converter, namely a method employing a 
continuous-time discrete-state Markov chain [12-
23]. Section 4 discusses reliability analysis of the 
boost converter.  Section 5 concludes the paper. 
Appendix A outlines methods for analyzing a 
general two-state Markov chain. 

 
2. PARAMETERS INFLUENCING THE 

FAILURE RATES OF COMPONENTS OF 
A BOOST CONVERTER 

 
A boost converter (step-up converter) is a DC-to-
DC power converter that boosts (steps up) 
voltage (while stepping down current). It might be 
classified as a switched-mode power supply 
(SMPS) containing at least two semiconductor 
devices (a diode and a transistor such as a 
MOSFET) and at least one non-dissipative 
energy-storage circuit element such as an 
inductor or a capacitor. In this section, several 
parameters that have impact on failure rates of 
each part in the boost converter are discussed. 
The boost converter considered herein comprises 
the following specific components: an inductor, a 
MOSFET, and a diode, as shown in Fig. 1 [23]. 
The expression of the failure rate for a 
component part or micro device can be 
formulated as in (1). 

 
����� = �� ∏ ��

�
���   (1) 

 
Where �  describes the number of the total 
effective dimensionless factors ��  affecting the 
failure rate of the specific part of the device. The 
failure rate for each part or component of the 
DC/DC boost converter device involves several 
factors specified as shown in Table 1.  
 
We now digress a little bit to explain the notation 
in Table 1,  wherein �� is the inductor failure rate, 
���  is the switch/transistor failure rate, ��  is the 
diode failure rate considering both faults of short 
circuit (SC) and open circuit (OC) and ��  is a 
basic failure rate. Moreover, the failure rate of 
each component is seen to be influenced by 
several factors such as the quality ��, type of the 

component ��, the application of device �� in the 
system, the environment ��  and the stress of 
electricity applied on the component ��� . 
Furthermore, the impact of temperature �� on the 
failure rate � can be specified as shown in Table 
2 [24]. 
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Power dissipation impacts the temperature of 
every part of the system. All aspects (except that 
of the temperature impact) are presumed to be 
constant. Equation (2)-(5) report thermal analysis 
of the system components. Utilizing Ref. [25], we 
calculate the junction temperature of the 
component as follows in (2).  
 

�� = �� + �����  (2) 
 

where ��� describes the junction-to-case thermal 

resistance (Kelvin per watt or �/� ), �� states the 

junction temperature, while the power dissipation 
is depicted as �� and the case temperature �� is 
formulated as follows 
 

�� = �� + ����� (3) 
 

where, ��  denotes the ambient temperature and 
��� denotes the thermal resistance between the 
junction and the case. Moreover, the inductor 
hotspot temperature represented by ���  is a 
function of its power dissipation ��  and the 
radiation of the surface area �  of the case. 
According to [25], we can get the following 
equations  
 

��� = �� + 1.1 Δ�  (4) 
 

Δ� = 1.25
��

�
  (5) 

 

The constant 1.25 in (5) is a dimensional (rather 
than dimensionless) constant. It has units of 
kelvin times meter squared per watt. The 
expressions of the power loss for some 
components of the boost converter are presented 
in Table 3 [26]. 
 

3. DEVELOPMENT OF A MARKOV 
RELIABILITY MODEL FOR THE DC/DC 
BOOST CONVERTER 

 
In the literature, the Markov technique is an 
important method used to evaluate the reliability 
of complex systems [27]. The Markov technique 
generally deals with several possible discrete 
states of the system, rate parameters of the 
transition paths as well as possible transition 
paths among the states [21, 27-30]. Fig. 3 shows 
a trivially simple discrete-state continuous-time 
Markov chain that models a DC/DC boost 
converter connected to a solar panel. Fig. 3 is a 
no-repair special case of Fig. A1 discussed in 
appendix A.  The Markov chain in Fig. 3 is the 
simplest possible such a chain, with just two 
states and a single transition. It has a good (up or 
healthy) state and a failure (down) state. The 

failure state represents catastrophic failure and is 
an absorbing state. 
 
In this study, the reliability of DC/DC boost 
converters connected to PV panels as shown in 
Fig. 2 is evaluated by using the Markov method. 
In Fig. 3, the transition diagram of the converter 
consists of two states that are a failure state and 
an initial/healthy/success state. Note that the only 
failure state is an absorbing state, and hence it 
stands for catastrophic failure. Fig. 3 is subject to 
the realistic assumption that the system is without 
repair, an assumption that we held in the main 
text but that we relax in Appendix A.  The 
reliability of the converter is its probability of being 
in the success state, and hence it is expressed as 
in (6) 
 

�(�)= ��(�) (6) 
 
with ��(�)  denoting the healthy state probability. 
Its governing equation is formulated as in (7) (a 
special case of the results in Appendix A)    
 

 
�

��
[��(�) ��(�)]= [��(�) ��(�)]�

−��� ���

0 0
�             

(7) 
where, ��� denotes the failure rate of the DC/DC 
boost converter, which is the transition rate from 
the healthy state to the absorbing/failure state. 
We consider the initial state as the healthy state, 
so that the initial condition of the ordinary 
differential equation (ODE) (7) can be formulated 
as  
 

[��(�) ��(�)]= [1 0]                               (8)    
 
Equations (7) and (8) constitute a well-formed 
initial value problem (IVP), whose solution ��(�)  
is calculated for non-negative time as  
 

 ��(�)= ������                                             (9)    
 
A short circuit (SC), an open circuit (OC) and 
other types of faults of the equipment will cause 
the total failure of the converter and lead to its 
permanent switching from the healthy state to the 
catastrophic-failure state. The overall failure rate 
��� is formulated as follows 
 

��� = �� + ��� + ��                                  (10)    
 
Equation (10) is obtained via the assumption that 
the converter is logically (albeit not physically) a 
series connection of its three components 
(inductor, switch, and diode). The factors of 
quality, voltage stress, environmental influences, 
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temperature, and power loss that are proposed 
and formulated in the MIL-HDBK-217 Handbook 
[6] will definitely impact the failure rate of each 
component. In (10), the component failure rates 
are calculated as constant (non time-varying), 
which is appropriate when each component is 
operated in the prime-of-life region of the bath-tub 
curve [31-35]. Note that the bath-tub curve 
representing the failure rate (hazard rate) versus 
time consists of three operation intervals namely; 
(a) the debugging (burn-in, or infant mortality) 
interval, (b) the prime-of-life (useful life) interval, 
and (c) the wear-out interval. These three 
intervals in the bath-tub curve correspond to a 
decreasing failure rate (DFR), a constant failure 
rate (CFR), and an increasing failure rate (IFR), 
respectively [31-35]. We assume that the 
components of the converter are operating in 
their useful-life (CFR) intervals, a satisfactory 
assumption in many real life applications [10]. 
Finally, the life expectancy or MTTF is described 
as follows [19, 32, 36-38] 
 

���� = ∫ ��(�)�� =
�

���

∞

���
                     (11)     (11) 

 

4. RELIABILITY EVALUATION OF THE 
DC/DC BOOST CONVERTER  

 
Reliability evaluation of the DC/DC boost 
converter is obtained by using the Markov 
method in Equations (6)-(9) and the data of the  
military handbook MIL-HDBK-217F [6]. The 
junction temperature �� of the MOSFET transistor 

can be calculated using (2) with an assumed 
ambient temperature  �� = 25℃ , a junction-to-
case thermal resistance of ��� = 18℃ /� =
18�/�   and a power dissipation in the MOSFET 
of ��� = 1.84 � . Finally, we obtain 
�� = 25+ (18�1,84)= 58.17 ℃  

 
Using Table 2, we can obtain the temperature 
factor of the MOSFET as follows 
 

 �� = �������
�

��.��� ���
�

�

���
� = 1.78 

 
Therefore, using Table 1 with �� = 0.012 
failure/million hours [6]  �� = 8 , �� = 8 , �� = 1 , 

we can calculate the failure rate of the MOSFET 
as follows 
 

��� = ���������� =
(0.012)(1.78)(8)(8)(1)= 1.37  
failure/million hours. 
 

Similar calculations can be carried out for the 
failure rates of the diode and the inductor.  
 
Utilizing Table 2, we can get the temperature 
factor of the diode as follows 
 

 �� = �
������

�

��� ���
�

�

���
�

= 6, 
 
and hence, using Table 1 with �� = 0.0038 
failure/million hours, �� = 2,  �� = 1 , ��� = 0.09 

�� = 1, we can calculate the failure rate of the 
diode as follows 
 

�� = ������������� =
(0.0038)(6)(0.09)(2)(1)(1)= 0.032  
failure/million hours. 

 
For the failure rate of the inductor, we use Table 
2 to obtain the temperature factor of the inductor 
as follows 
 

�� = �
��.��

�.���������
�

������
�

�
���

�
= 1.29 

 
hence, using Table 1 with �� = 3�10�� 
failure/million hours, �� = 1 , �� = 1  and �� = 2 , 

we can calculate the failure rate of the diode as 
follows 
 

�� = �������� = (3�10��)(1.29)(1)(1)=

0.0000387 failure/million hours. 
 
The Total failure rate for the DC/DC boost 
converter can be calculated using (10), and we 
will get 
 

��� = �� + ��� + �� = 0.0000387  + 0.032 +
1.37 = 1.4020387 failure/million hours. 

  
The reliability of the converter can be obtained by 
using (9) as 
 

 �(�)= ������ = ���.�������� 
 
where �  is measured in million hours. For 
� = 1000  hours = 0.001 million hours, the 
reliability of the converter is 0.9986. Finally, the 
MTTF can be calculated by (11) and we obtain it 
as follows 
 

���� =
1

���

=
1

1.4020387failure/million hours
= 713247 ℎ���� 
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Fig. 4 shows the reliability curve of the converter 
plotted against time. The curve in Fig. 4 is a 
decaying exponential curve (typically called a 

relaxation curve), which represents the 
Complementary Cumulative Distribution Function 
(CCDF) of the exponential distribution [21, 32]. 

Vi
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Fig. 1. A DC/DC Boost Converter Connected to a Solar Panel 
 

Table 1. Failure rate models 
 

Component Failure rate models 
Inductor �� = �������� 

MOSFET ��� = ���������� 

Diode �� = ������������� 
 

Table 2. Temperature factors 
 

Component Temperature factors 
Inductor 

�� = �
��.��

�.���������
�

������
 � 

�
���

�
 

MOSFET 
�� = �

������
�

������
 � 

�
 ���

�
 

Diode 
�� = �

������
�

������
 � 

�
���

�
 

 

Table 3. Power loss expressions of components of the boost converter 
 

Component Power loss 
Inductor �� = �����

�  
 
MOSFET 

�� = ���(��)(����)� +
1

2
������������� + �������� +

1

2
���������

�  

 
Diode 

�� = ������ + ������
� +

1

2
��������

�  
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Fig. 2. Solar panels connected to boost converters and a dc bus 
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Fig. 3. A Markov-chain model for a dc/dc boost converter connected to a solar panel. 

 

 
 

Fig. 4. Reliability curve for the DC/DC Boost Converter 

 
5. CONCLUSIONS  
 
In this paper, a Markovian technique for reliability 
evaluation of a DC/DC boost converter 
connected to PV panels has been presented. 
The reliability of the converter is affected by the 
failure rate of each of its parts, the temperature 
factor, and the power dissipation in each part. 
The overall failure rate of the DC/DC boost 
converter is used to describe the transition of the 
converter from its healthy state to its 
absorbing/failure state. The results show that the 
reliability of the converter under study is 0.9986 
for  � = 1000 ℎ����  and the MTTF is 
713247 ℎ���� . This result can be used by 
professionals working in the area of power 
electronics and their applications for any 
appropriate maintenance plan or for proposing 
component replacement/repair before its actual 
failure so that the downtime of the system can be 
reduced. 
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APPENDIX A 
 
A Two-State Markov Process with Repair 
 
For a general reliability model as shown in Fig A1, the state-transition diagram of the system entails a 
failure rate �, a repair rate �, an up (working) state 1 and a down (failed) state 2. The probability �� of 
the up state is system availability, while the probability �� of the down state is system unavailability. 
The transition-rate matrix of the system [�] can be obtained from the state-transition diagram in Fig. 
A1 as follows 

 

[�]= �
��� ���

��� ���
�= �

−� �
� −�

�       (A1) 

 
We assert that the modern way of drawing the state-transition diagram (highly acclaimed for its 
simplicity and intuitionistic appeal) deliberately ignores state self-transitions. Therefore, only off-
diagonal elements of [�] are explicitly retrieved from the state-transition diagram in Fig. A1. The 
element ��� stands for the transition rate from state 1 to state 2, and hence it is �, while  the element 
��� stands for the transition rate from state 2 to state 1, and hence it is �. The matrix [�] is a singular 
matrix of zero determinant, since the sum of elements in every row of it is zero. This property allows 
us to complete the construction of [�]. Each non-diagonal element in this matrix is expressed as the 
negative of the sum of other elements in its row.  
 

To get a unique solution of the steady state ��⃗ , we can use the following homogeneous matrix 
equation 
 

[0 0]= [�� ��]�
−� �
� −�

�               (A2) 

 
which is equivalent to two linearly-dependent scalar equations, or a single linearly-independent scalar 
equation. We have to supplement this with a linearly-independent scalar equation, namely, the 
normalization condition 
 

�� + �� = 1                               (A3) 
 
The combination of (A2) and (A3) results in the following inhomogeneous matrix equation, which now 
has a regular matrix 
  

[0 1]= [�� ��]�
−� 1
� 1

�                    (A4) 

 
The matrix equation (A4) is in a form that is very common in operations-research circles. Taking the 
transpose of both sides of (A4), we obtain a form that is more popular in engineering circles 
 

�
0
1

�= �
−� �
1 1

��
��

��
�                              (A5) 

 
We now solve (A5) using determinants according to the celebrated Cramer’s Rule, viz. 
 

�� =
�
0 �
1 1

�

�
−� �
1 1

�
=

−�

−(� + �)
=

�

� + �
                                                                                                              (�6�) 

 

�� =
�
−� 0
1 1

�

�
−� �
1 1

�
=

−�

−(� + �)
=

�

� + �
                                                                                                              (�6�) 
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The steady state vector ��⃗ = �

�

���

�

���

�  so obtained is a well-known result in reliability theory, in particular 

when the failure rate � and the repair rate � are expressed as the reciprocals of the MTTF and the 
mean time to repair (MTTR). 
 

 
 

Fig. A1. A Two-State Markov proses with an availability model with a non-zero repair rate 
 
We now handle the transient problem for the Markov process in Fig. A1. The algebraic equation (A2) 
is replaced by the following ordinary differential equation (ODE)  
   

�

��
��⃗ �(�)= ��⃗ �(�)[�]                             (A7) 

 
This ODE comprises a well-formed initial value problem (IVP), when supplemented with the following 
initial condition, which assumes that the system is initially good 
  

��⃗ (0)= �
��(0)

��(0)
� = �

1
0

�                      (A8) 

 
We solve this IVP by employing a signal flow graph [19, 39-51] in the transformed (Laplace) domain. 
We distinguish the time-domain version of a variable from its Laplace-domain version by inserting an 
overhead bar for the latter version. We identify the time-derivative of a variable with an overhead dot. 

Hence, we use the symbols ���(�) and �̇��(�) to denote the Laplace transforms of  ��(�) and �̇�(�)=  
���(�)

��
, respectively. By contrast to the time-domain solution, in which we strive to reduce the number of 

unknown variables in (A7) from two to one by invoking the normalization condition (��(�)+  ��(�)=
1), we deliberately double the number of unknown variables in the transformed domain. In fact, we 

now deal with the four variables  ���(�),���(�), �̇��(�), and �̇��(�), as shown in the SFG of Fig. A2. We 
construct this SFG by supplying a linear expression of each of these four variables. The expressions 
for the former two variables are obtained by first expanding (A7) as 
 

�
���(�)

��

���(�)

��
� = [��(�) ��(�)]�

−� �
� −�

� 

 
and then transforming it term-wise as 
 

��̇��(�) �̇��(�)� = [���(�) ���(�)]�
−� �
� −�

�                                                                                                (A9) 

 
The two latter variables are expressed by first using the following theorem for the transformed 
derivative 
 

�̇��(�)= ����(�)− ��(0) 
 
and then expressing the transformed variables themselves (for � = 1,2) 
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���(�)= ��� (�̇��(�) +  ��(0))                         (A10) 
 
Equations (A9) and (A10) are used for constructing the SFG in Fig. A2. This SFG has two source 
nodes, which are specified by the initial conditions (A8). This step reveals an obvious advantage of 
incorporating the initial conditions from the outset.  Since ��(0)= 0, one of the sources of the SFG is 
annihilated and it disappears. 
 
The SFG is seen to have three loops �� = −����, �� = −����, �� = �����, where the two loops �� 
and �� are not touching. The common denominator to any gain formula is the graph delta given by 
[43] 
 

Δ = 1 − (�� + �� + ��)+ ���� 
= 1 +  ���� + ���� − ����� + (−����)( − ����) 
=1+( � + �) ��� 

 

 
 

Fig. A2. A signal flow graph for analyzing the Markov process in Fig. A1 in the Laplace (�) 
domain 

 
Therefore, the transformed state probabilities are obtained via Mason gain formula [43] as 
 

���(�)=
���[����]

Δ
=

�����������

��( ���) ��� =
���

�[��(���)]
  

 

���(�)=
����

Δ
=

�

�[� + (� + �)]
 

 
The sum of the two state probabilities are 
 

���(�)+ ���(�)=
� + � + �

�[� + (� + �)]
=

1

�
 

 
This is a good check, since it verifies the normalization condition: ��(�)+ ��(�)= 1 for � ≥ 0. 
 
Now, we express the first transformed probability as a sum of two partial fractions 
 

���(�)=
�

�
+

�

� + (� + �)
 

 

� = � � + �

� + (� + �)
�

���

=
�

� + �
 

 

� = �� + �

�
�

���(���)
=

−�

−(� + �)
=

�

� + �
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���(�)=
1

� + �
�
�

�
+

�

� + (� + �)
� 

 
For � ≥ 0, we obtain 
 

��(�)=
1

� + �
�� + ���(���)�� 

 
and we check that the steady-state value is as obtained before 
 

 lim�→∞ ��(�)=
�

���
 

 
We now repeat the previous steps for the second transformed probability, namely 
 

���(�)=
�

�
+

�

� + (� + �)
 

 

� = � �

� + (� + �)
�

���

=
�

� + �
 

 

� = ��

�
�

���(���)
= −

�

� + �
 

 

���(�)=
1

� + �
�
�

�
−

�

� + (� + �)
� 

 
For � ≥ 0, we obtain 
 

 ��(�)=
�

���
�� − ���(���)�� 

 
and again we check that the steady-state value is as obtained before 
 

lim
�→∞

��(�)=
�

� + �
 

 
We can also recover (9) when there is no repair, and we can as well check the normalization condition 
in the time domain  
 

 ��(�)+ ��(�)= 1 for � ≥ 0 
 
We now construct a time-domain solution by deriving the exponential [52-56] of the transition-rate 
matrix. First, we obtain the square of this matrix as 
 

[�]� = �
−� �
� −�

� �
−� �
� −�

� = �
�� + �� −�� − ��

−�� − �� �� + �� � 

 

= −(� + �)�
−� �
� −�

� = −(� + �)[�] 

 
Hence, we can utilize mathematical induction [19. 57-62] to obtain the k

th
 power of this matrix as 

 
[�]� = (−1)���(� + �)���[�],    � ≥ 1 
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Now, the exponential of the matrix is obtained via the uniformly-convergent infinite sum 
 

�[�]� = �
[�]���

�!

∞

���

= [�]+
−1

� + �
�

(−(� + �)�)�

�!

∞

���

[�] 

= [�]−
��(���)�

� + �
[�]+

1

� + �
[�] 

=
1

� + �
�
� �
� �

� −
1

� + �
��(���)�[�] 

 
and finally the probability vector is obtained as 
 

��⃗ �(�)= ��⃗ �(0)�[�]� = [1 0]�[�]� 

=
1

� + �
[� �]−

1

� + �
��(���)�[−� �]= 

 
1

� + �
�� + ���(���)� � − ���(���)�� 

 
in agreement with our previous results. 
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