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We take a stochastically driven single-level quantum dot embedded between two metallic leads at different temperatures works as
a heat engine. We numerically study the optimized efficiency at two optimum operations, which lies between the maximum and
minimum efficiency. The minimum efficiency either takes the efficiency value at maximum power or the lowest possible value,
zero. Using a unified criterion for energy converters, we find the optimum working condition for the heat engine. We study
the optimized efficiency of a quantum dot heat engine according to the optimization criteria to find their corresponding
optimized quantities in an external magnetic field (stochastic driving force). Accordingly, we found (1) efficiency-wise,
optimized efficiency is better than efficiency at maximum power; (2) power-wise, the optimized power is smaller than its value
at maximum power by 35%; and (3) period-wise, it performs the task in a cycle twice that of the period at maximum power.
We study the overall performance of the heat engine by introducing a figure of merit that considers the contribution of each of
the above quantities as a function of Carnot efficiency. Based on the proposed figure of merit, the model shows that the second
optimization criteria are 3 times better than the first optimization criteria as a function of Carnot efficiency.

1. Introduction

The concept of thermodynamics has been developed from
the analysis of heat engine performance. Carnot invented
an idealized mathematical model of heat engines called the
Carnot cycle and proved that there exists a maximum
efficiency of all heat engines, which is given by Carnot
efficiency. This efficiency is a central cornerstone of thermo-
dynamics. It states that the efficiency of a reversible Carnot
heat engine attains the maximum possible work for a given
temperature of the hot reservoir, Th, and cold reservoir, Tc.
Due to an infinitely slow operation, it generates zero power.
The efficiency (ηc = 1 − Tc/Th) of the Carnot cycle is the upper
bound of the efficiency at which real heat engines are unreal-
istically high. The practical implications aremore limited since
the upper limit ηc is only reached for reversible engines. One of
the important questions is what will be the efficiency at a

maximum power of a system that is operating in a finite time.
In a groundbreaking work, Curzon and Ahlborn [1] obtained
this efficiency for the Carnot engine by optimizing the Carnot
cycle with respect to power rather than efficiency, which is
given by Curzon-Ahlborn efficiency, ηCA

ηCA = 1 −
ffiffiffiffiffiffi
Tc

Th

s
= ηc

2 + η2c
8 + ϑ η3c

À Á
: ð1Þ

This efficiency is used to seek a more realistic upper bound
on the efficiency of a heat engine in the endoreversible approx-
imation [1, 2] (taking into account the dissipation only in the
heat transfer process). Currently, it has been shown that the
Curzon-Ahlborn efficiency is an exact consequence of linear
irreversible thermodynamics when operating under condi-
tions of strong coupling between the heat flux and the work
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[3–5]. The value of 1/2 for the linear coefficient in Eq. (1) is
therefore universal for such systems.

Recently, efficiency at maximum power (ηmp) in heat
engines has been reported in Refs. [3, 6–10]. In addition, the
universal values for different model has been reported in Ref.
[11]. There has recently been a resurgence of interest in the
behavior of small systems out of equilibrium. A significant
amount of research is being conducted to investigate small
thermodynamic machine’s efficiency at maximum output.
This is motivated in part by the possible universality for sys-
tems driven by a small temperature difference [3, 6, 12]. As a
result, it is worthwhile to investigate how quantum effects
may influence the efficiency of devices at maximum output.

Several different optimization criteria have been
proposed. However, they suffer from a lack of generality
since they apply to a particular heat devices [11, 13, 14].
Among these methods, the two most often used for optimiz-
ing heat devices either require the evaluation of the entropy
generation, which may be difficult for systems far from equi-
librium, or depend on the parameters of the environment,
which are usually difficult to determine. According to
Hernandez et al. [15], the entropy generation minimization
and exergy analysis are the most common ways of optimiza-
tion methods. To identify the point of operation of an engine
where the trade-off between energy cost and fast transport is
compromised [15], this optimization criterion presents the
advantage of being independent of any environment param-
eter and does not require the explicit evaluation of entropy
generation. Besides, this method can potentially apply to a
large range of engine sizes ranging from nanoscopic to
macroscopic devices. Using this optimization criterion to a
Brownian heat engine, they found its optimized efficiency lies
between efficiency at maximum power and Carnot efficiency
[16]. Moreover, results obtained from the application of this
method on endoreversible Carnot-type engines agree with
those obtained by applying ecological-like criteria which
involve the explicit derivation of entropy generation [17].

For irreversible heat engines, it gives a performance regime
lying between the maximum efficiency and the efficiency at
maximumpower, a regime considered optimum for traditional
heat engines [14]. Besides, the optimized efficiencies of the four
representative models of heat engines have been reported in
Ref. [11], and they investigated their optimized efficiencies
are not only larger than the efficiencies at maximum power
but found them to have sort of a universal behavior.

Recently, there have been many interests in studying
quantum dot heat engines. Esposito et.al. [18] proposed a
model that consists of a single-level quantum dot in contact
with hot and cold heat reservoirs in an external magnetic
field (stochastic driving force). In a presence of thermal
gradient, they studied how the device operates as a heat
engine, determined the efficiency at maximum power, and
compared their value with that of the Curzon-Alborn effi-
ciency. Since it operates at maximum power, however, it
wastes a large amount of the input energy though the task
is accomplished in a short enough time. One can think of
minimizing the wastage by appropriately relaxing the oper-
ating time. Our inspiration is to develop miniaturized
devices to utilize energy conversion at the nanoscale. So,

we need to minimize the waste energy and improve such
engine performance. In addition, we are motivated to know
how much of the maximum available power is being utilized
and how the model performs the task at the optimum condi-
tion. Recently, few papers have appeared related to quantum
dot engine [19–26]. They studied efficiency, power, and
period at two optimum operations of a thermoelectric
single-level quantum dot in the absence of stochastic exter-
nal forces. With time, researchers [27] take a single-level
quantum dot embedded between two metallic leads at differ-
ent temperatures and chemical potentials as a heat engine.
They studied efficiency, power, and period at two optimum
operations of a thermoelectric single-level quantum dot in
the absence of stochastic external forces [27]. Besides, the
optimized efficiency of a stochastically driven quantum dot
heat engine was presented in Refs. [28, 29].

In this paper, we study the optimized efficiencies of the
heat engine model, which is proposed by Esposito et al. [18].
We find the optimized efficiencies, which are bounded
between the Carnot efficiency and the efficiency at maximum
power. We also study the scaled electron energy barriers,
power output, optimized efficiencies (ηopt), the ratio of opti-
mized efficiencies to the efficiency at maximum power, i.e.,
efficiency-wise (εopt), the ratio of optimized power to the max-
imum power, i.e., optimized powers (ωopt), optimized periods
(τopt) which is defined as the inverse of the current from and to
the quantum dot, relative efficiency ηrel, and relative periods
τrel with different conditions. Finally, by applying optimiza-
tion criteria, we define a figure of merit to quantify how the
engine operates under any condition.

The rest of this paper is organized as follows: in Section 2,
the model of the system is presented, and the thermodynamics
quantities are determined. In Section 3, we discuss the maxi-
mum power output of the model with different parameters.
In Section 4, we find and analyze the model’s performance
characteristics. Section 5 deals with the summary.

2. Theory and Model

We consider a particular model that consists of a single-level
quantum dot in contact with hot left lead, temperature TL,
and chemical potential μL, and with cold right lead, temper-
ature TR, and chemical potential μR in an external magnetic
field (stochastic driving force) (see in Figure 1).

In the presence of an external magnetic field, the system’s
energy level stochastically switched between an upper and a
lower energy value, εj, respectively, where j = u, d. The upward
and downward rates are k+ and k−. In each energy level; we
have two possible energy states of the system, either empty
or occupied. The system’s possible energy states are denoted
by jn, where n = 0, and 1 denotes an empty or occupied energy
state, respectively. Therefore, we have four possible states of
the system such as u1, u0, d1, d0. The evolution of the occupa-
tion probability of the system state is described by the stochas-
tic master equation in terms of k±j = k±Lj + k±Rj; the total
transition rate out of the dot (+) or into the dot (-) of either
lead is given by [18, 30, 31]
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ð3Þ

where PjnðtÞ is the occupation probability of finding the
system in state j at time t with the corresponding electron
number n = 0, 1. The transition rates of an electron into lead
ν, where ν = L, R, from the dot, and out of lead ν to the dot,
are given, respectively, by k−νj = Γνjð1 − f νjÞ and k+νj = Γνj f νj.

The expression f νj = ½Expfεj − μν/Tνg + 1�−1 is the Fermi
distribution in lead ν, and Γνj is the coupling strength between
the lead and the dot in state j.

The crucial variables of the problem are the right and the
left scaled electron energy barriers (with kB = 1), which are
given, respectively, by

xR =
εu − μR
TR

, ð4Þ

xL =
εd − μL
TT

: ð5Þ

The probability currents between the four states are
Iun⟵dn = k+Pdn − k−Pun and Iνj1⟵j0 = k+νjPj0 − k−νjPj1. It is
convenient to introduce the total current to the dot when
it is down or up is given by the sum I j1⟵j0 =∑νI

ν
j1⟵j0. In

the steady state, using Eq. (2), we easily solve the occupation
probabilities, and the average currents entering the system

from the hot reservoir are equal to that entering the cold res-
ervoir from the system. Therefore, the energy current
injected into the system by the stochastic driving can be
expressed as

Iext = εu − εdð ÞIu1⟵d1 = εu − εdð ÞI, ð6Þ

while the matter (M) and energy (E) currents entering
the system from lead ν are given by

IνM =〠
j

Iνj1⟵j0 and IνE =〠
j

εjI
ν
j1⟵j0: ð7Þ

In steady state, heat flux extracted from the lead ν is
given by

_Q
ν = IνE − μνI

ν
M: ð8Þ

with satisfies matter ILM = −IRM and energy Iexe = −ILE − IRE
conservation at steady state.

Therefore, the power becomes

P = −〠
ν

_Q
ν = εu − εdð ÞI + μR − μLð ÞILM , ð9Þ

which is the contribution of the energy flux injected by the
stochastic driving and the energy flux required to bring an
electron from the left lead through the dot to the right lead.

The heat flux entering from the left lead to the device
and the power performed by the device upon bringing elec-
tron from the left lead to the right lead is given by Eqs. (8)
and (9), respectively. The corresponding efficiency of the
model is given by

η = 1 − xR
xL

1 − ηCð Þ, ð10Þ

where the isothermal operation of our engine can be oper-
ated under more conventional operating conditions.

3. The Efficiency at Maximum Power

In this section, we consider a model that is consisting of a
single level quantum dot in contact with hot and cold heat
reservoirs in an external magnetic field [18]. In the presence
of thermal gradient, they studied that the device operate as a
heat engine, described the efficiency at maximum power of
the model in the tight coupling regime, and compared their
value with that of the Curzon-Alborn efficiency. Besides,
they also found numerical solutions for maximum electron
energy barriers and power output of the device. In the tight
coupling regime, the power output of the model can be
written as

P = TL xL − xRð Þ 1 − ηCð ÞI xL, xRð Þ: ð11Þ

To obtain the efficiency at maximum power, the power
output takes its maximum value when ∂P/∂xL
jxmp

L
= 0 = ∂P/∂xRjxmp

R

. In the extreme conditions, and the
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Figure 1: The model of a stochastically driven quantum dot heat
engine. The arrows show all possible transitions.
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expression of the right electron energy barrier and left elec-
tron energy barrier is given by

xmp
R = 2 ln cosh xmp

L /2
À Á
ffiffiffiffiffiffiffiffiffiffiffi
1 − ηc

p +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 xmp

L /2
À Á

1 − ηc
− 1

s2
4

3
5, ð12Þ

xmp
L + 2 ηc − 1ð Þ ln cosh xmp

L /2
À Á
ffiffiffiffiffiffiffiffiffiffiffi
1 − ηc

p +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 xmp

L /2
À Á

1 − ηc
− 1

s2
4

3
5

−
ffiffiffi
2

p
cosh xmp

L

2

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh xmp

L

À Á
+ 2ηc − 1

q
+ sinh xmp

L

À Á
= 0,

ð13Þ
respectively.

As a starting point, we solve the numerical solutions for
the scaled electron energy barriers at maximum power con-
dition, as shown in Figure 2. To round out the picture, we
show in Figure 2 the numerical solutions for right, xmp

R (the
blue solid line), and left, xmp

L (the blue dotted line) electron
energy barriers as functions of Carnot efficiency (ηc). We
have seen that the left electron energy barrier xmp

L is always
of order unity so that the regime of maximum power cannot
be well described by either a high- or a low-temperature
expansion. It can also be seen that the maximum power is
a monotonically increasing function of ηc.

Due to their technological importance, we also give the
corresponding maximum power and operational conditions
of the scaled energies.

Figure 3 depicts the performance characteristic of the
power output versus Carnot efficiency at maximum power
with different condition. We demonstrated that the differ-
ence between the lowest and highest maximum power as a
function of Carnot efficiency (blue line) is due to its mono-
tonic increase by increasing the Carnot efficiency. This
numerical finding is assisted by examining the behavior of
output powers in Figure 3, where the power output strongly
depends on reservoir temperature choices.

The transcendental equation can be solved perturba-
tively for small Carnot efficiency, which is given by

ηmp =
ηc
2 + η2c

8 + ϑη3c : ð14Þ

We thus recover the universal value ηc/2 in the linear
regime [3], as well as the factor 1/8 for the quadratic coeffi-
cient [6]. This result obtained in Eq. (14) meets with the
work of [7]. Here, we can see that the coefficient of the linear
and the quadratic terms agrees with that of the Curzon-
Alhborn model had been reported in [18].

We also numerically solve the efficiency at maximum
power displayed in Figure 4. We note that the efficiency at
maximum power increases monotonically when driven out
of equilibrium. It is bounded from above by Carnot effi-
ciency ηC , while the Curzon-Ahlborn efficiency ηCA provides
a rather tight lower bound. When a system operating at
maximum power condition wastes a large amount of the

input energy even if the task is accomplished in a short
enough time. In the next section, we obtain the device’s opti-
mal performance under two operational conditions by
appropriately relaxing the operating time.

4. Optimized Efficiency at Two
Optimum Operations

In this section, we study the performance of a heat engine both
theoretically and numerically. Using a unified criterion for
energy converters, we derive the expression for the optimized
scaled electron energy barriers, optimized efficiencies (ηopt),
efficiency-wise (εopt), optimized powers (ωopt), optimized
periods (τopt), relative efficiency ηrel, and relative periods τrel
for two cases. Besides, we quantify the overall performance
of the heat engine by introducing a figure of merit.

The optimized efficiencies of the heat engine can be
obtained by defining the rate of objective function ( _Ω).
Then, the rate of objective function can be defined as the
difference between effective useful power _Eu,eff = ðη − ηminÞ
_Qin and lost useful power _Eu,lost = ðηmax − ηÞ _Qin quantities,
where _Qin is the input power. An engine operating in a finite
time has efficiency its laying between the minimum effi-
ciency, ηmin, and maximum efficiency, ηmax, i.e., ηmin ≤ η ≤
ηmax. The rate of objective function can be described as the
difference between two quantities ( _Eu,eff − _Eu,lost),

_Ω = 2η − ηmin − ηmaxð Þ _Qin: ð15Þ

These two quantities are functions of independent and
dependent parameters describing the process. Then to find
the system’s optimized efficiencies, first, we need to find
the maximum value of the rate of objective function with
respect to the system’s set of control parameters. In the rate
of objective functions, the minimum efficiency takes the effi-
ciency value at maximum power (ηmp), and the maximum
efficiency takes the Carnot efficiency, ηC (hereafter referred
to as case 1). This case considers the whole possible range
to search for optimization. The rate of objective function
for case 1 is then given by

_Ω1 = 2η − ηmp − ηc

� �
_Qin, ð16Þ

where the input power of the model _Qin = TLxLαð f ðxLÞ
− f ðxRÞÞ. Here, f ðxLÞ and f ðxRÞ are the left and right lead
Fermi distribution, respectively.

On the other hand, the minimum efficiency takes the
lowest possible value (i.e., ηmin = 0), and the maximum effi-
ciency takes the Carnot efficiency (i.e., ηmin = ηC) (hereafter
referred to as case 2). In this case rate of the objective func-
tion can be described as

_Ω2 = 2η − ηcð Þ _Qin: ð17Þ

In order to maximize the rate of objective function with
respect to the right and left electron energy barriers, we need
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to solve ∂ _Ω/∂xRjxoptR
= 0 = ∂ _Ω/∂xLjxoptL

. In the optimal condi-

tions, the expression of the right electron energy barrier
and left electron energy barrier can be expressed base on
the two cases.

The optimized efficiency (in the first case described in
Eq. (16)), the rate of objective function takes its maximum
value when ∂ _Ω1/∂xRjxoptR

= 0 = ∂ _Ω1/∂xLjxoptL
. In these condi-

tions, the expression of the right electron energy barrier
and left electron energy barrier is given by

xopt 1ð Þ
R = 2 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ηmp − ηc
2ηc − 2

s
cosh xopt 1ð Þ

L

2

 !"

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ηmp − ηc
2ηc − 2 cosh2 xopt 1ð Þ

L

2

 !
− 1

vuut
3
5,

ð18Þ

xopt 1ð Þ
L + 4 ηc − 1ð Þ

2 − ηmp − ηc
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ηmp − ηc
2 − 2ηc

s
cosh xopt 1ð Þ

L

2

 !"

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ηmp − ηc
2 − 2ηc

cosh2 xopt 1ð Þ
L

2

 !
− 1

vuut
3
5

+ sinh xopt 1ð Þ
L

� �
−

ffiffiffi
2

p
cosh xopt 1ð Þ

L

2

 !

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh xopt 1ð Þ

L

� �
+
3ηc − ηmp − 2
2 − ηmp − ηc

s
= 0,

ð19Þ
respectively. The above equations are transdential, so we
solve numerically and displayed in Figures 2 and 3. It shows
the cure of first case of optimization criteria in the form of
the scaled energy and output power as a function of Carnot
efficiency (red line). In both Figures 3 and 4, the difference
between the lowest and largest output power is due to its
monotonic increasing by raising the Carnot efficiency. Such
a numerical finding is assisted by examining the behavior of
output powers in Figure 3, in which the power output
strongly depends on the reservoir’s temperature choices.

The power series expansion of optimized efficiency in
the limit of small Carnot efficiency, ηC for the first case of
optimization scenarios, which are given by
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ηopt 1ð Þ = 0:875ηc + 0:03875η2c + ϑ η3c
À Á

: ð20Þ

For the first case of optimized efficiency (Eq. (20)), which
is identical to [27] in the linear regime. On the other hand, we
solve the optimized efficiency of the model numerically, as
shown in Figure 4 (red line). We note that the optimized effi-
ciency increases monotonically when driven out of equilib-
rium. It is bounded from above by Carnot efficiency ηC,
while the efficiency at maximum power ηmp provides a rather
tight lower bound. Using the corresponding expression for the
input power ( _Qin), efficiency (η), and efficiency at maximum
power (ηmp) of the model, we obtain the values of scaled phys-
ical quantities such as the efficiency-wise (εopt = ηopt/ηmp),
optimized power (ωopt = Popt/Pmp),, and optimized period
(τopt = πopt/πmp). These scaled physical quantities in the first
case of optimization scenarios can be expressed as

εopt 1ð Þ =
7
4 −

9
25 ηc − ϑ η2c

À Á
, ð21Þ

ωopt 1ð Þ =
7
16 + 3

16 ηc + ϑ η2c
À Á

, ð22Þ

τopt 1ð Þ = 4 − 1
2 ηc − ϑ η2c

À Á
, ð23Þ

respectively. These scaled quantities are expressed in a series
expansion in the small ηc limit.

Similarly, optimized efficiency (in the second case
described in Eq. (17)), the rate of objective function takes
its maximum value when ∂ _Ω2/∂xRjxoptR

= 0 = ∂ _Ω2/∂xLjxoptL

. In

this conditions, the expression of the right electron energy
barrier and left electron energy barrier is given by
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2 − ηc

s
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ð25Þ
The resulting transdential equations can be solved

numerically and displayed in Figures 2 and 3. These figures
proved the cure of the second case of optimization criteria
in the form of the scaled energy and output power as a func-
tion of Carnot efficiency (green line). Figures 3 and 4 are
exploits the difference between the lowest and largest output

power is due to its monotonically increase by raising the
Carnot efficiency. Such a numerical finding is assisted by
examining the behavior of output powers in Figure 3, in
which the power output strongly depends on the reservoirs’
temperature choices.

In the second case of optimization scenario, to obtain the
power series expansion of optimized efficiency in the limit of
small Carnot efficiency, ηC is given by

ηopt 2ð Þ = 0:75ηc + 0:03125η2c + ϑ η3c
À Á

: ð26Þ

The expression of the optimized efficiency for the second
case (Eq.(26)) is identical to in the linear regime [11] for the
particular model they studied. On the other hand, we
numerically solve the optimized efficiency of the second case
as shown in Figure 4 (green line). Figure 4 (green line)
depicts that the optimized efficiency increases monotonically
and approaching to one. It is bounded between the first case
of optimized efficiency and the efficiency at maximum
power. Using the same approach as in the first case, the
value of scaled quantities in the second case of the optimiza-
tion scenario can be expressed as

εopt 2ð Þ =
3
2 −

5
16 ηc − ϑ η2c

À Á
, ð27Þ

ωopt 2ð Þ =
3
4 + 1

8 ηc + ϑ η2c
À Á

, ð28Þ

τopt 2ð Þ = 2 − 1
2 ηc − ϑ η2c

À Á
, ð29Þ

in a series expansion in the limit of small ηc.
In both cases of optimization scenarios under consider-

ation, our optimized efficiency results of the particular
model have a similar results to Ref. [27].

From Figure 4, we note that as Carnot efficiency goes to
zero, the optimized efficiency goes to zero. This is because
when Carnot efficiency becomes very small (i.e., as the tem-
perature of the two leads approaches the same), the heat flux
that is getting into the quantum dot becomes very small;
hence, the optimized efficiency approaches zero, whereas
Carnot efficiency approaches one (i.e., as the temperature
of the two leads are different), the optimized efficiency
approaches to one.

Figure 5 shows the numerical solutions for the ratio of
optimized efficiency for the two cases of optimization cri-
teria to the efficiency at maximum power versus the full
range of Carnot efficiency. We can see that as Carnot effi-
ciency approaches to one, εopt monotonically decreases and
reaches the same value. This numerical solution illustrates
that the first optimization is more efficient than the second
optimization overall range of ηC . However, this advantage
is more pronounced for smaller values of Carnot efficiency.

Figure 6 compares how much of the maximum available
power is utilized by the two optimization criteria. The figure
clearly shows that the first case of the optimization criterion
utilizes a large amount of maximum power at a small value
of Carnot efficiency and performs even better as Carnot
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efficiency approaches one. The second case of optimization,
on the other hand, is less than half of the maximum available
power over the entire range of Carnot efficiency.

As we see from Figure 7, the Carnot efficiency
approaches its maximum value, and the time it takes to com-
plete its work decreases monotonically in both cases of opti-
mization criterion. However, as the Carnot efficiency
approaches zero, the time required to complete the task
increases monotonically in both cases. The figure clearly
shows that in the limit of small Carnot efficiency, the second
optimization criterion completes its task in a cycle twice as
long as the period at maximum power. The first optimiza-
tion criterion, on the other hand, performs its tasks at a rate
ranging from two and a quarter to four times that of the
maximum power period over the entire range of ηc.

In Figure 8, we plot the relative efficiency (ηrel) of the two
cases of optimization criteria as a function of Carnot
efficiency. When ηC goes to zero, the relative efficiency is
maximum because the deviation of the two efficiencies is
highest for small temperature difference. When ηC increases,
relative efficiency (ηrel) decreases since the deviation between
the two efficiencies decreases: the optimized efficiency and
efficiency at maximum power get closer and closer to each
other. When ηC going to maximum values-unity, the authors
declare that they have no known competing financial inter-
ests. The relative efficiency becomes zero because of both
the optimized efficiency and efficiency at maximum power
approach to one; hence, the difference becomes zero.

Figure 9 shows the relative time, τrel, as a function of ηc that
describes the relative time decreases as ηc increases in both
cases of optimization criteria. This is because when the temper-
ature of the two heat reservoirs is close to each other (i.e., when
ηc is near to zero), the two cases of optimization criteria period
τopð1/2 and τmp (where τopð1/2Þ > τmp) have maximum value,
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Figure 5: The numerical values of the ratio of optimized efficiency
for the two cases of optimization criteria to the efficiency at
maximum power versus the Carnot efficiency.
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their difference is large, and this decreases as ηc increases
because the difference between τopð1/2Þ and τmp decreases.

The engine performs better in terms of efficiency-wise
when subjected to the first optimization criterion than when
subjected to the second criterion (Figure 5). However, when
the second optimization criterion is used, the engine per-
forms better in terms of both power-wise and period-wise
than when the first optimization criterion is used
(Figures 6 and 7). We introduce a figure of merit
(f m = εω/τ) that uses the three quantities to determine which
optimization criterion provides the best trade-off.

Figure 10 shows the figure of merit for the two cases of
optimization criteria versus the Carnot efficiency. Both plots
increase monotonically when Carnot efficiency increase.
Comparing the plot based on the optimization criteria
(scenarios) clearly shows that the first optimization performs
better over the second for the whole range of Carnot effi-

ciency. We see that the first optimization performs three
times better than the second.

5. Summary

We considered a stochastically driven single-level quantum
dot in contact between two (hot and cold) heat reservoirs.
We studied the engine’s performance by applying the two
optimization scenarios. By applying the optimization cri-
teria, we have found an optimized efficiency which lies
between the efficiency at maximum power (and also
Curzon-Ahlborn [[1]]) and maximum efficiency (Carnot
efficiency). When the temperatures of the hot and cold res-
ervoirs are close to each other, the efficiency at maximum
power is 0:5ηc. Using the optimization criteria, we found
the optimized efficiency takes 0:875ηc and 0:75ηc values
when the minimum efficiencies are 0:5ηc and zero, respec-
tively. According to the two optimization scenarios, the first
optimization is more advantageous than the second case of
optimization criterion overall range of ηc. However, this
advantage is more pronounced for smaller ηc, but it shrinks
to the same value when ηc goes to one. Power-wise, the
second optimization criterion is more advantageous than
the first case of optimization criterion because the second
case of optimization criterion utilizes a large amount of
maximum power at a small value of Carnot efficiency and
performs even better as Carnot efficiency goes to one. The
second optimization criterion performs its task in a short
period than that of the first optimization criterion. The over-
all performance of the second optimization criterion is three
times better than the first one.
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