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Abstract

In Survival Analysis, the focus of interest is a time 7™ until the occurrence of some event. A set
of explanatory variables (denoted by a vector Z) is considered to analyze if there is a relationship
between any of them and 7. Accordingly, the “hazard function” is defined:

< =
At ) e lAirlr(I)JD[T_tJrA|A:r>t,Z 28

Several models are defined based on this, as is the case of the additive model (among others).
Bayesian techniques allow to incorporate previous knowledge or presumption information about
the parameters into the model. This area grows extensively since the computationally techniques
increase, giving rise to powerful Markov Chain Monte Carlo (MCMC) methods, which allow to
generate random samples from the desired distributions. The purpose of this article is to offer

a summary of the research developed in Bayesian techniques to approach the additive hazard
models.
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1 Introduction

In Survival Analysis, the focus of interest is a time 7™ until the occurrence of some event. Given f(t)
and F(t) (the density function and the cumulative density function respectively), other functions
(survival, intensity, hazard and cumulative hazard) are defined according to them. Usually, the
variable of interest is observed during a time in which the event of interest has not occurred.
In those cases, the observations are called “right censored data”. To include those cases in the
model, another variable is considered: the “censoring variable” C. Then, the observed time is
T := min(T",C), and a non-censoring indicator § = I(T* < C) discriminates between them.
Finally, the data collected considering this model takes the form (¢,d). Next, a brief review of the
theory is presented, along with the notation used in the sequel.

Definition 1.1. If 7™ is continuous, the Survival function
St):=Pr(T" >t)=1-F(%). (1.1)

Definition 1.2. The Hazard function or hazard rate function of a continuous variable T™ at
time ¢ is:

* * t+A
/\(t):g% Prit<T SAH—A\T > t) :Eﬂ%ft i(u)du/Pr(T* >t):@. 12)

Definition 1.3. The Cumulative Hazard function of a variable T™ is:

At) = /0 " \(8)ds = —logS(t)]. (1.3)

Following that:
S5(t) = exp[—A(t)].

Definition 1.4. Given a counting process
N(t) = “number of occurrences in [0, t]”,
the Intensity function defined according to this process is:
I(t) = Y (t) A1), (1.4)
where we have introduced the ”at risk” function

1, if the event doesn’t occur until the instant ¢,

0, otherwise. (1.5)

Y () = Lirnost) = {
The regression analysis in survival data focuses in the relationship between the time 7™ and a set
of explanatory variables called “covariates” (which is suspected to have an effect in the response

variable). These covariates are denoted by a vector Z, and can be considered time dependent, in
which case Z = Z(t).

Many classes of models are developed in Survival Analysis. A wide class of survival models utilized
are the semiparametric models (composed by a parametric and a non-parametric component). The
justification of its popularity is its flexibility and its large range of applications, allowed specially
by the non-parametric component. In this class, the most known and studied models are the
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proportional hazard model [1], the additive hazard model [2], and the accelerated failure time
model [3]. An expression for the hazard function for a fixed observation with covariate vector
z = (z1,...,2p) and its corresponding associated regression vector 8 = (fu,..., 8p) for the above
three models are:

Proportional Hazards model (PHM):
A(t|z) = Ao(t)e”? (1.6)
Additive Hazard model (AHM):
Mt|z) = Xo(t) + 2'8 (1.7)
Accelerated Failure Time model (AFTM):
A(t|z) = Xo(te” P)e* ? (1.8)

where )¢ is the baseline hazard function associated with the non-parametric component of the
model. Full text treatises on this type of models can be found in [4], [5], among others.

The parametric component (8 € RP) is associated with p regression parameters, while the non-
parametric component (Ao(.)) is very general, in that it is only required that Ao be nonnegative and
that it integrates to infinity. An expression usually adopted for the non-parametric component is
the denominated “piecewise constant function”, in which given (J — 1) fixed points in the time
interval, the baseline hazard is expressed as follows:

A 50:O§t<51,
Ao s1 <t < sa,

Ajr sj 2 <t<sj-u,
Ay t>sj_1,

where A1,...,A;—1 > 0 and A; > 0, which guarantees that [ A(t)dt = co, implying that T is not-
degenerate (in the sense that P(T™ < co) = 1). The grid (s1, ..., s7-1) (whereeach s;,j =1,...,J—1
is a given constant) must be fixed before collecting the data.

Both models can be redefined as the intensity of a counting process N(¢), in which case, the
expression for the AHM is given by the next expression:

I(t|2z) =Y (t) [Xo(t) + 2'B]. (1.10)

This expression including the intensity function must be interpreted like the probability that the
event of interest takes place into the time interval [¢, ¢ 4 dt), given the fact that it has not occurred
previously [6] e.g.. Usual troubles to deal with in the AHM context are:

e the restriction imposed to the parametric component of the model (2’83) to ensure the
nonnegativity of the hazard function,

e the mathematically unamenable expression that usually acquires the likelihood function.
A review of a frequentist development for this model was included in [7], and into a frequentist

robust context a review of the three models was addressed in [§].

From a Bayesian perspective, the PHM has been the most studied model in Survival Analysis.
A review of this is included in [9]. In the AFTM, a list of references for a Bayesian treatment
is included in [10]. Nevertheless, the AHM has gained attention as an alternative to the PHM,
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specially in the cases that the proportional hypothesis is not satisfied. Different models present
different aspects in the relation between the response variable and the covariates.

Our objective in this manuscript is to review the Bayesian literature for the AHM, focusing in the
complications and in the different approaches offered by different authors.

2 Bayesian Inference in the AHM
2.1 First Approaches

The first work published in this area was exhibited by [11].

A special case of the AHM was considered by the authors, denominated “gamma polygonal model”,
in which the hazard function takes the next expression:

AHZ = 2) = Mo(t) + M(HZ = 2). (2.1)

As in the piecewise constant hazard model, the time is partitioned in different fixed points. According
to this grid, the distinct baseline values take a linear expression, implying that the entire baseline
shape is polygonal. The baseline considered is:

8851 (2.2)

Nolt) = Ajer,iij,lStﬁs]’,j:L...,Jfl,
0 Aj,if t Z Sj—1.

The parametric component of the model A (¢) is the hazard function of a Gamma distribution with
parameters « and 3, i.e,,

" exp(—ft)
CEI—
[ ue—t exp(—fu)du
An assumption imposed is that « and 3 are specific for each individual in the population, but related

to the covariates Z through a probabilistic model. Then, a hierarchical structure is considered in
the model, with the second level of hierarchy given by:

AN(tZ = 2) = L ift>0. (2.3)

%IB, z2~ LN (V'2,00), (2.4)
B~ ﬁN(uB: 02)7 (25)

where LN denotes the log Normal distribution. The hyperparameters b, o2, 15 and 02 are considered
unknown constants common to all individuals in the population.

To perform a Bayesian analysis, the authors selected the next level of prior hierarchy for the
parameters in the model (where ZG denotes the Inverse Gamma distribution) by:

pslog ~ N(mg,vo3), (2.6)
0—[23 Nzg(aﬁvbﬁ)a (27)
b‘O’i NNP(mCH Vagi)7 (2 8)
02 ~ TG (au,ba). (2.9)

For the parameters of the baseline, the authors selected an autocorrelated first order process:

A]' = Aj_l.exp(e]-),j = 2, ceey J
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where (e2,...,€;) are assumed independents, with Normal distribution, mean 0 and variance o2,
where:

A1 ~ Gamma(aa,ba), (2.10)
o ~IG(ac,b.). (2.11)

The posterior obtained following this model becomes intractable. Nevertheless, the conditional
posterior of (ug,03), (ia, o) and o. are available and then a simulation study using Gibbs sampling
[12] or another MCMC technique is possible. The other conditionals do not have a conjugate
analysis, but it is still possible to sample from them using a Metropolis-Hastings algorithm [13, 14].
Then, through a Metropolis-within-Gibbs simulation, approximate samples from the full posterior
could be obtained.

Concluding remarks about this model:

e the Gamma-polygonal allows certain heterogeneity in the population (an analogous could be
achieved by introducing frailty terms into the model),

e the polygonal baseline hazard function is slightly more complex than the “piecewise constant
baseline hazard” (in the computationally sense) and has the advantage that it is continuous,

e considering the parametric component of the model as a mixture of Gamma distributions
avoids the restriction of the nonnegativity of 2’8 > 0,

e if the regression parameters are time independent, the parametric component is constant in
t, an then the model becomes an exponential model.

Finally, the authors applied this results to an unemployment database, in which 559 questionnaires
of undergraduate of “Valencia Education and Science Council” and “Valencia University” (Spain)
during the years 1978 to 1993 are considered, in which the variable of interest is the time, in months,
from graduation until the first employment.

Another approach was presented by [15], which has no close relation with [11]. The approach
considered by these authors is different, and the model is not exactly the same. Motivated by the
drawbacks of choosing a truncated prior to avoid the trouble of the nonnegativity of the hazard
function, the authors redefined the model including specified indicators applied to the covariates,
which are specified according the expected incidence of the covariate. This approach is the only
one in the literature which takes a multinomial prior related to the expectation of the increment
or decrement of each covariate. The indicator associated to the kth covariate are denoted M} and
may takes the values:

—1, if the kth covariate is associated with hazards reduction,
, if the kth covariate is not associated with any hazards change, (2.12)
, if the kth covariate is associated with hazards increase.

My =

= O

The covariates vector z is “standardized” so that |z;| < 1,Vi. This standardization can be done
for bounded covariates by subtracting the minimum possible value and dividing by the range. For
unbounded covariates, the sample minimum and range can be used, potentially expanding the
range to include interesting values of the predictors outside of the sample range in order to use the
model for extrapolation and more flexible predictions. According to those modifications, the hazard
function results in:

p
A(t:20) = No(0) + S {1asu—ny (1= z) + Lasu—n 2} 57 = M) + 27 67, (2.13)
k=1
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where 2}, = lar,=—1)(1 — zix) + Liar,=1)Zik, Ao(t) = Xo(t) — > r—; Lim,=—1)B% and B* denotes
the vector with components 37, ..., 8;. The likelihood considered by the authors is based on the
intensity of a counting process N(¢) and it is defined by:

n

T { [T 6@ + =8 0@ | exp (— #OYi(t){/\S(t)JrzZ/ﬁ*}dt) (2.14)

i=1 \t£0
where dN;(t) denote the increment of N;(¢) over the small interval [¢,t + dt).

Since the increment is infinitesimal, the dN;(t) contributes to the likelihood in the same manner as
independent Poisson random variables even though for all ¢, dN;(t) < 1.

Calling t1,...,t7—1 the unique failure times observed in data set, and considering the piecewise
constant hazard model with grid defined by such time points (i.e. s; = t;,5 = 1,...,J — 1), the
likelihood can be re-expressed as:

n J-1
-H H [T D@Psw+2pp®

te(sj_1,55]
exp (— / YO (1) + zf/ﬂ*}dt> - (@215)
te(sj—1,84]

Under the assumption that the risk accrued in the interval (s;_1, s;] is small (i.e., that are no ties,
and that the data set is not too small),

Vi, j, /’ Yi(){\5(1) + 2 87}t ~ 0.
Sj—1

Then, the likelihood contribution across this interval for individuals at risk is approximately

{dAoj + 27 B (55 — 55-1) )57 exp(—{dAoj + 25 B (55 — si-1)}),

where dAo; = [7 | Ag(t)dt and dN; ; = 1 if subject i fails at time s; or 0 otherwise. Hence, an
J

approximation to the likelihood expression is given by

IT TT {dos + 27 87 (55 — 55-1) 1" exp(—{do; + 2 B (s; — 55-1)})-

i=1j5:Y;=1

The priors chosen for the baseline hazard A§(t), the model indicators M = (M, ..., M,), and the
vector of regression coefficients §*, are:

e independent Gamma priors are taken for each A;,j =1, ..., J in the baseline hazard, which
are assumed independent,

e independent Multinomial distributions are taken to the Mjy’s:
—1, with probability 6x,—1,
M, = 0, with probability 6% o,
1, with probability 6y 1,
where k =1,...,p, and 0,1 + 00 + Ok,1 =1,

e independent Gamma distributions are considered for the regression parameters.
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The hyperparameters of these priors are selected in a prior elicitation context (i.e. mathematical
translation of expert knowledge). This is an important contribution of the authors in the Bayesian
context. The model indicators index the direction and occurrence of effects for the different
covariates, but do not quantify the magnitude of the effect. The slopes are measured by the
regression coefficients.

To simplify efficient posterior computation, a data augmentation approach is utilized. Under the
assumed hypothesis, the dN;; are independent Poisson random variables:

. p 7
dN;; 4 Poisson <dA0j + szk@:) , Vi,j:Yi=1. (2.16)
k=1

This expression results in a non standard set of full conditional posterior distributions. Because of
that, independent Poisson latent variables are included in the model, obtaining:

P
dNij = dMijo + Y  Innuz0dNijk, Vi, j: Yy =1, (2.17)
k=1
where
T(dNijo) = POiSSOTZ(dNijo; dAoj), (218)
7(dN;ji) = Poisson(dNijk; (sj — 8j-1)2ixBk)- (2.19)

Using the property that the sum of independent Poisson variable is Poisson, it is straightforward
that integrating out the latent variables is equivalent to the previous form (2.16). This formulation
allows to take advantage of Poisson — Gamma conjugacy to obtain simple conditional posterior
distributions.

At this point, Gibbs sampling allows to generate samples of any full conditional posterior, and then
from the full posteriori itself.

The authors generalized this issues to allow a Bayesian analysis in a more general model, denoted
by Additive-Multiplicative Hazard Models, with hazard function equal to:

At, z) = Mo(t) exp(2'a) + 28, (2.20)

where @ = (a1, ..., ap)" are proportional hazards coefficients, and the remaining parameters defined
as previously. This model is more general than the additive and the multiplicative models, including
both. If a; = 0 Vi, the additive model is obtained, and if 5; = 0 Vi, then the expression results
in the proportional model. For notational convenience, the model is defined so that the same
covariates are included in the proportional and in the additive components. The prior is adapted
to accommodate the multiplicative components and then generalize the Gibbs sampler accordingly.

In choosing the prior for (Ao, M, a, 8) (independence is assumed):
T()\(),M,Of,ﬁ) = T(AO)T(M7 ﬁ)T(Oﬁ) (221)

The priors 7(Ao) and 7(M, B) chosen are the same as in the additive model. To induce a prior
on the proportional hazards regression coefficients 7(a), the authors consider a prior defined in a
previous article by themselves to realize Bayesian inference on the Cox model, denoted “one-inflated
truncated gamma density”.

In a Simulation study section, it is verified that the method utilized works properly and can
discriminate between the additive and the multiplicative components, showing that the approach
has good frequentist properties. In a Data Example section, the authors carried out a study on
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coronary heart disease on a data base of 1571 individuals, who were disease free at roughly age
45. It focused on age at onset of coronary heart disease in female subjects in relation to certain
covariates (hypertension, above normal cholesterol levels, overweight status and obesity). The study
reveals that it cannot concluded that any of the covariates has only additive or multiplicative effects.
Following that, the additive-multiplicative approach seems to be the most reasonable.

A review of the previous commented articles was included in [16], who suggest a new alternatives:

e In the Gamma-polygonal model [11], he propose as an alternative to the baseline hazard, a
“piecewise constant” model, and then a Gamma process prior for the baseline parameters.

e In the model proposed by [15], a Gamma process is suggested as prior to the baseline
increments. Code in WinBUGS is supplied according to this model. Then, a data analysis
is performed for melanoma and lung cancer databases.

2.2  Frailty Issues
The pioneers in including frailties in the model were [17].

The inclusion of frailties is motivated because the survival analysis requires the assumption that
the individuals are independent given the covariates, and that the heterogeneity is explained in
terms of the observed covariates. These underlying assumptions may not be satisfied due to
the influence of unobserved heterogeneity among individuals in the study, and to overcome these
potential limitations, a random effect (frailty) is inserted into the hazard function, giving rise to
the frailty survival models. The insertion of the frailty w (w > 0) is usually done in a multiplicative
way (i.e. the hazard function was multiplied by w or a function of w (like €“)). In this work,
the frailties are incorporated in an additive way to Aalen’s model, where the data are considered
sub-divided in k groups, including then the vector of frailties w = (w1, ws,...,ws)" to the model,
and then proceed to do a Bayesian analysis for the “additive survival model with frailty”.

According to the incorporation of the frailties to the model, the expression of the intensity function
results in:

Li(t|zi,wi,) = Yi(t) [Xo(t) + 20.8(t) +wy, | ,i=1,--- ,p, (2.22)

where N;(t) is the number of occurrences of a particular event at time ¢, I; € {1,...,k} and Y;(t)
take values 1 or 0 whether the individual 7 is at risk at time ¢, respectively. Gamma priors has
been considered for the frailties wi, wa, ..., wk, which are assumed i.i.d. According to this, the joint
frailty distribution is given by:

k a—l1 k
[T(a)]” Fb"e <H wl) exp (—wal> ,
1=1 =1

where a and b are the shape and scale parameters, respectively. Those frailty parameters must
also been estimated from the data. Unit mean for the frailties has often been assumed to avoid
problems with identifiability of multiplicative frailty models. The variability of the frailties can
be interpreted as the degree of heterogeneity among individuals. The authors considered time
dependent covariates, contributing with extra flexibility to the model. The same idea of [15] and
[16] was utilized in the prior selection for the baseline, and in the same manner, a cumulative
regression function is defined to each time dependent covariate, which allows to incorporate an
increasing process to them.

To model the baseline hazard function Ao(t), the piecewise-constant hazard is adopted. Time
dependent covariates are considered in this work, and “cumulative regression functions” are defined
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according to them and to the selected grid to the baseline, as:

0u(t) = [ Biu)dust = 0.4 = 1,.op (2.23)

Independent-increment Gamma processes are assumed as prior for the baseline piecewise-constant
parameters and the cumulative regression functions. Thus, for each Agj, 4; (wherein this parameters
denote the increments of Ag and 4,q¢ = 1, ..., p respectively in the interval (s;—1,s;]), a Gamma
distribution with shape and scale parameters coAj and ¢y is assigned for Ao, and Gamma distribution
with shape and scale parameters c4€2; and ¢, are assigned for each €.

According to this prior selection, the result posterior is proportional to:

J—1
i coAS . —1
1111 (Iﬁf exp(—1i;))Ag; ¥ exp(—coAo;)
7j=1 ZERJ'

H (Q;;ﬂ’éj—l exp(_Cquj)):| T(w|8)7(8), (2.24)

where ds; = s; — sj—1,1i; = Ii(s;)ds; = Yij(Aoj + BiS% + wi,ds;), Yij = Yi(s;), @ = (Qj, .., Upj)
and N;; = dN;(s;). Rj is the risk set in the interval (s;—1,s;],i=1,...,n,j=1,..,J—1,¢=1,...,p,
and I; € {1,...,k}. The parameters of interest are (Ao, (2, a,b), whereas the frailties w are taken
as nuisance parameters that are eliminated by integration giving rise to a joint marginal posterior.
This posterior expression is awkward to work. Nevertheless, the marginal posterior distributions
of Ao, 2,a and b can be evaluated using MCMC methods. Gibbs sampling is available to generate
random samples of the joint posterior distribution.

In this article, a “Model Assessment” section is included. Both model comparison and model
adequacy are important issues in survival analysis. An extensive review of Bayesian methods
for studying these issues is detailed in [18], such as the Bayesian information criterion and the
conditional predictive ordinate (CPO) for model comparison. The authors present a way to estimate
the CPO in this model, and then it is possible calculate any measure for model comparison (for
example the pseudo-Bayes factor).

In an Illustration Section, an application of this method was performed on real data sets: the first
of them are 90 male patients with larynx cancer, and the second is referred to 42 leukemia patients.

In another work [19], the results obtained previously are extended to a “shared frailty” model.
In this case, the frailty term w for each individual may be partitioned into two or more terms
w = w1 + w2 + ... + wi (where w; are frailty terms shared with other individuals, j = 1,...,k) in
order to assess various types of frailties within the same individual. According the new expression
of the frailties, an indicator vector a; = (a;1, a;2, ..., aik)' is considered for the individual 7, in which
each a;j,j =1, ..., k indicates if the corresponding frailty term w; is present or not. The expression
resulting after include this modifications is:

Li(t]zi,w) = Yi(t) [Xo(t) + 2iB(t) + ajw] . (2.25)

The Bayesian treatment proposed for this model is analogous to the previous work, keeping the
selection of the prior distributions of the parameters.

An application of this model is presented as an illustration to an adoption database of 125 families
with adoptive children, aiming to compare the association of the intensity of death by infection
(pneumonia) between genetic and environmental factors, concluding that the environmental conditi-
ons are the most important.



Alvarez and Riddick; AJPAS, 4(2): 1-14, 2019; Article no.AJPAS.50053

Another approach in area of Bayesian estimation in the AHM with frailty was exhibited in his
Master thesis by [20]. In this work, spatial frailties are included, independent Gamma priors are
considered to the different piecewise constant baseline parameters, and an improper uniform prior is
selected to the regression parameters. Both covariates and frailties are considered time dependent,
and the objective is estimate them according a grid, with a piecewise constant function, in the
same manner than the baseline. The frailties are assumed Gaussian with covariance structures of
either geostatistical or conditional autoregressive (CAR) type, two well known spatial dependence
structures.

In the CAR model, the author develops a fully Bayesian method to estimate the parameters of the
model. The frailties are assumed independent, allowing the introduction of spatial correlation in
each time interval independently. The prior selected for each frailty component is Normal, where
the variance parameters are assumed Inverse Gamma. This procedure to sample from the full
conditionals of the baseline hazard, the regression and the frailty parameters relies on Metropolis-
within-Gibbs simulations. Accordingly, an extensive study on the Metropolis step is done in order
to obtain an efficient “proposal density”. Those proposals are considered for each conditional, and
the hyperparameters are selected so that the proposal and the conditional density are as similar
as possible. Two methods are developed: using the mean of the full conditional, and finding
the mode of the full conditional. In the first case, the normalizing constants are required, and
the hyperparameters of the proposal are defined aiming at means equality. In the other method
(suggested as more numerically efficient), the hyperparameters are selected using the mode of the
full conditional, in order to obtain a better approach. The method is tested trough a simulation
study, and then is applied to a Prostate cancer database.

With the same procedure, sampling techniques are available to sample from almost all the full
conditionals of the geostatistical model. In this case, the prior considered for the frailty components
is a Multivariate Normal distribution with mean zero and the variance-covariance matrix depending
on the distances between locations. In this case, priors are assigned to the variance and correlation
parameters of the variance-covariance matrix. An Inverse Gamma prior is assigned to the variance
parameters, and Gamma priors are utilized for the correlation parameters, whit hyperparameters
chosen according how strong is the belief in the priors selected. The Inverse Gamma prior is
chosen in order to make it conjugate. However, for the correlation parameters there is no available
proposal. The author leaves the procedure of obtaining the suitable proposal for future research.
Recently, [21] presents a similar analysis of the CAR model.

2.3 Other Proposals

In a different context, an empirical Bayesian treatment was presented in [22]. In this work, empirical
estimators were developed for the regression parameters, survival curves and their correspo-nding
standard deviations. Those estimators have the advantages of being easy to generate computationally,
and not requiring elicitation of the hyperparameters. The method guarantees a monotone estimator
for the survival curve, and can be extended easily to time dependent covariates. The priors selected
are a Gamma process for the cumulative baseline hazard increments (which are supposed piecewise
constant), and an improper uniform for the regression parameters. The empirical Bayes estimators
of the hyperparameter vector associated to the prior process assigned to Ao(t) and the regression
parameters, are obtained by maximizing the likelihood defined by the model (which is proportional
to a product of Poisson distributions). The posterior obtained for A¢(t) conditioned on the rest
of the parameters and the data does not have any standard form. However, the authors find a
closed-form expression for the Laplace transform, so that the posterior moments of Ag(t) and So ()
can be evaluated.

That procedure is applied to a prospective study of 205 melanoma patients, collected between years

10
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1962-1977. In this analysis, the only covariate chosen is gender, and the results are compared
with the full Bayes estimator [15], and the method of moments estimator [23]. An improper
noninformative prior process is used for the full Bayes method, suggesting that the full Bayes
method is appropriate when accurate prior information is available (otherwise, the empirical Bayes
method fits better). In a simulation study, the authors conclude that it is preferable to use empirical
Bayes methods when the true form of Ag is in doubt. The full Bayes estimator presents a high level of
relative bias compared with the empirical Bayes and moment estimators, especially with a moderate
censoring level and noninformative priors. Additionally, extension to time dependent covariates and
asymptotic properties are included in another sections.

A new class of models was considered by [24]. The authors propose a class of transformation hazard
models for right censoring data. It includes the additive and proportional hazards models as special
cases.

That class of transformations are based on the Box-Cox transformation [25], and takes the next
expression:

-1 .
$(Y) = 7 Ey#0, (2.26)
lOg(Y)7 if y=0,
where v 1)
lim ~————~ = log(Y). 2.27
lim — og(Y) (2.27)
Within a survival semiparametric model with baseline hazard Ao, the transformation proposed is:
o (A(tlzi)) = ¢ (Mo (1)) + 2:(t)' B, (2.28)

where ¢ is the link function defined by the Box-Cox transformation.

The additive and multiplicative model are included into this class of transformations (the additive
case when v = 1, and the multiplicative case when vy = 0).

The first goal is to model selection on ~, by fitting different models for each value of 4 and evaluating
them through a model selection criterion. The value of v that accurate a better fit is then selected.
After that, it proceed to the estimation of rest of the parameters of the model. The piecewise
constant model is chosen for A\o(t), denoting Ao the Jth dimensional vector (A1, ..., A;)". In prior
selection, the authors deal with the nonnegativity of the hazard restriction. To avoid this trouble,
a truncated prior is selected. Following that, a truncated Multivariate Normal distribution is
selected for (8|Xo). According to this, the joint distribution of the priors is:

7(8, Ao) = T(BXo)T(No)I(A] +7ZiB > 0), Vi, j. (2.29)

In order to obtain the full conditional distribution of Ao, the normalizing constant must be calculated,
that involves a multivariate integral in an unwieldy nonlinear constrained parameter space. To
circumvent this problem, the prior selected is modified, aiming at reducing the problem to the
univariate case. This procedure is an innovate technique worthy to consider when a truncated
multivariate distribution is chosen to avoid the nonnegativity restriction of the hazard. Denoting
Zi(—k) and B(_y) the vectors Z; and 3 with the kth component removed, the authors define:

Al +9Z Bk
hy (Mo, B_ry, Z) = mi 7 Hk) . 2.30
+(Ao, B=r), Z) Hzlljn{ 7 (2.30)
Then, a joint prior for (8, Ao) is considered, of the form:
7(8,20) = T(BrlB=r)s Xo)I (Bx = —h~ (Ao, B(—k), Z)) - (2.31)
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This prior specification only include the restriction parameter S, leaving all the other parameters
free.

It is usual (but not necessary) to consider S(_x) and Ao to be independent a priori, obtaining
T(B(=k)> Ao) = T(B(—k))T(Xo). The authors assume that the components of Ao are independent a
priori with Gammea distributions. Further, a normal prior distribution is chosen for each component
of B(_x). Finally, sampling from the posterior is available through a Metropolis-within-Gibbs
algorithm.

The authors also presents a Model assessment section, which presents the DIC (Deviance Information
Criterion) and CPO statistics according to the model.

In other articles, extensions of this model are presented, including frailties [26, 27], and adapting
this issue to “cure fractions” models [28]. Several simulations and applications to real data are
presented. They all show that the best fitting model correspond to some 0 < v < 1, justifying the
relevance of this approach.

Currently, we are undertaking research for the AHM from a hybrid Bayesian approach which
combines the classical estimating equation method of [23] with Bayesian priors.

3 Discussion

Research has been developed by many authors on Bayesian inference for the additive hazards model.
The purpose of this article was to review them, showing the reader the current state of the art in
this area. The advances in MCMC methods and the increase computational power gave rise to
widespread Bayesian techniques, which allow to sample from distributions that were intractable
before. The proposed methods are flexible in the choice of priors. The baseline hazard function
is either model parametrically or nonparametrically as a piecewise constant function. In the later
case, independent priors for the piecewise constants are usually chosen. Because of that approach,
most of the literature omit modeling certain aspects of the baseline function that could be of
interest (e.g., unimodality, concavity, monotonicity, conexity, etc). Rare exceptions are proposal for
a gamma process for the baseline functions (e.g. [16], [17]) or the introduction of an AR process
for the piecewise constant (e.g. [11]). This is a promising area for future research. Also, from
the computing point of view, there is a fair amount of research to be done in the search to better
algorithms.
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