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Abstract 
 

Background: In modeling heteroscedasticity of returns, it is often assumed that the series are 
uncorrelated. In practice, such series with small time periods between observations can be observed to 
contain significant serial correlations, hence the motivation for this research. 
Aim: The aim of this research is to assess the existence of serial correlations in the return series of Zenith 
Bank Plc, which is targeted at identifying their effects on the parameter estimates of heteroscedastic 
models. 
Materials and Methods: The data were obtained from the Nigerian Stock Exchange spanning from 
January 3, 2006, to November 24, 2016, having 2690 observations. The hybridized Autoregressive 
Integrated Moving Average-Generalized Autoregressive Conditional Heteroscedasticity (ARIMA-
GARCH-type) models such as Autoregressive Integrated Moving Average-Generalized Autoregressive 
Conditional Heteroscedasticity (ARIMA-GARCH), Autoregressive Integrated Moving Average-
Exponential Generalized Autoregressive Conditional Heteroscedasticity (ARIMA-EGARCH) and                
the Autoregressive Integrated Moving Average-Glosten, Jagannathan and Runkle Generalized 
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Autoregressive Conditional Heteroscedastic (ARIMA-GJRGARCH) under normal and student-t 
distributions were employed to model the conditional variance while the GARCH-in-Mean-GARCH-type 
model corresponding to the selected ARIMA-GARCH-type model was applied to appraise the possible 
existence of serial correlations. 
Results: The findings of this study showed that heteroscedasticity exists and appeared to be adequately 
captured by ARIMA(2,1,1)-EGARCH(1,1) model under student-t distribution but failed to account for 
the presence of serial correlations in the series. Meanwhile, its counterpart, GARCH-in-Mean-
EGARCH(1,1) model under student-t distribution sufficiently appraised the existence of serial 
correlations. 
Conclusion: One remarkable implication is that the estimates of the parameters of ARIMA-GARCH-type 
model are likely to be biased when the presence of serial correlations is ignored. Also, the application of 
GARCH-in-Mean-GARCH-type model possibly provides the feedback mechanism or interaction between 
the variance and mean equations. 
 

 
Keywords: GARCH-type models; heteroscedasticity; hybridized models; time series; volatility. 
 

1 Introduction 
 
The existence of heteroscedasticity in financial series (returns) always leads to the violation of the 
assumption of constant variance in linear time series. The linkage between the occurrence of 
heteroscedasticity in financial data and the violation of the assumption of constant variance in linear time 
series has created a vast research area for professionals in Statistics, Economics and Finance. As required 
naturally, the assumption of constant variance assumes that the error term of the linear stationary model 
should be homogeneous. By implication, the constant error variance means that the conditional variance of 
the dependent variable is also constant. According to [1], the assumption of constant variance is required to 
ensure the accuracy of standard errors and asymptotic covariances amongst estimated parameters. It could be 
remarked that a major setback on linear stationary models when applying to financial data (returns) is their 
failure to account for changing variance. In other words, whenever the assumption of constant variance is 
violated, heteroscedasticity has occurred, implying that the conditional distribution of the dependent variable 
has different degrees of variability at different levels. 
 
In the Statistical context, heteroscedasticity (i.e. non-constant variance) means the same thing as volatility in 
Finance and Economics, although they are generally used interchangeably by some authors. However, 
neglecting the presence of heteroscedasticity in linear models makes the ordinary least squares estimates of 
ARIMA parameters inefficient. Although they are still consistent and asymptotically normally distributed, 
their variance-covariance matrix is no longer the usual one. As a result of this, the t-statistics become invalid 
and cannot be used to examine the significance of the individual explanatory variables in the model.                    
Also, over-parameterization of an ARIMA model and low statistical power are identified as part                                
of the consequences for neglecting heteroscedasticity. Lastly, neglecting heteroscedasticity can lead to 
spurious non-linearity in the conditional mean and difficulty in computing the confidence interval for 
forecasts (see [2,3,4,5]). Furthermore, details of heteroscedasticity modeling are documented in 
[6,7,8,9,10,11,12,13]. 
 
Certainly, the motivation for this study is drawn from the fact that serial correlations (a relationship between 
a variable and its lagged-value over a time period) tend to exist in most financial series through several 
analyses on such series are often based on the assumption that the series are uncorrelated. Moreover, these 
serial correlations are believed to be introduced by those in the time-varying heteroscedasticity process [14]. 
However, failure to account for these serial correlations when modeling heteroscedasticity would amount to 
obtaining a biased estimate of the true degree of persistence (see also [15]). To capture these high variations 
over time with regards to risk and volatility, [16] proposed the modification of standard (generalized 
autoregressive conditional heteroscedastic) GARCH-type model under the assumption that the variance 
coefficient in the mean equation measures the relative risk aversion. Also, according to [17], the increasing 
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roles played by the risk and uncertainty in financial assets have led to the development of new time series 
techniques for measuring time variations. One of such techniques is the GARCH-in-Mean (GARCH-M) 
model. It allows the conditional variance of the series to influence the conditional mean. Also, the 
formulation of the GARCH-M model implies that there are serial correlations in the series and are being 
introduced by those in the heteroscedasticity process. This particular specification is useful and effective in 
modeling the risk-return relationship in financial series. The major advantage of the GARCH-M model over 
the standard GARCH-type models is that any misspecification of variance function would not affect the 
consistency of the estimators of parameters of the mean. Meanwhile, prior studies of [18,17,19,20,21,22,23] 
and [24] have applied GARCH-M technique to capture varying property of risk aversion and autocorrelation 
of return series as well as interaction between the mean and variance equations of GARCH-type models. 
Particularly, this study seeks to improve on the work of [25] that detected and modeled the asymmetric 
GARCH effects using GARCH-type models under the assumption that the return series is uncorrelated. This 
is captured by applying the GARCH-M technique to ascertain the presence of serial correlation in the return 
series considered. 
 
The study is further organized as follows: materials and methods are presented in section 2, discussion of 
results is handled in section 3 while section 4 concludes the study.  
 

2 Materials and Methods 
 
2.1 Returns 
 
The return series, ��, can be obtained given that �� is the price of a unit share at time t, and ����	 is the share 
price at time t− 1. Thus,  
 

�� = ∇���� 	= (1 − �)���� 		= ��	�� 	− ��	����.                                                                            (1) 
 
Here, ��	is regarded as a transformed series of the share price (��) meant to attain stationarity, that is, both 
mean and variance of the series are stable [25] while	�	is the backshift operator. 
 

2.2 Autoregressive integrated moving average (ARIMA) model 
 
The authors in [26] considered the extension of the ARMA model to deal with homogenous non-stationary 
time series in which ��, itself is non-stationary but its ���-difference is a stationary ARMA model. Denoting 
the ���-difference of ��  by   
 

�(�)= �(�)∇��� = �(�)��,                                (2) 
 
where �(�) is the nonstationary autoregressive operator such that d of the roots of �(�)	= 0 is unity and the 
remainder lie outside the unit circle while�(�) is a stationary autoregressive operator. 
 

2.3 Standard GARCH-type models 
 
Conceptually, heteroscedastic models are hybridized of both mean and variance equations. The mean 
equation is represented by the ARIMA Model as shown in equation (3),  
 

�� = �� + ��,	                                                                                                                                    (3)           
                      

where  �� = ��	+ 	∑ ������
�
��� + ∑ ��

�
��� ����. Also, 

 
�� 	= 	����,                                                                                                                                        (4) 
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where �� is a sequence of independent and identically distributed (i.i.d.) random variables with zero mean, 
i.e. E(��) = 0  and variance 1. In practice, �� is often assumed to follow the standard normal or a standardized 

student-t distribution while ��  is the standardized residual term that follows autoregressive conditional 
heteroscedastic (ARCH(q)), generalized autoregressive conditional heteroscedastic (GARCH (q, p)), 
exponential generalized autoregressive conditional heteroscedastic (EGARCH(q,p)) and Glosten, 
Jagannathan and Runkle generalized autoregressive conditional heteroscedastic (GJR-GARCH(q,p)) models 
in (5), (6), (7) and (8), respectively.  
 

2.3.1 ARCH model 
 
The first model that provides a systematic framework for modeling volatility is the ARCH model of [27]. 
Specifically, an ARCH (q) model assumes that 
 

��
� = 	� + ������

� + ⋯+ 	������
� ,                                                                                                   (5) 

 
where � > 	0,and	��,. . ,�� ≥ 	0	[28]. The coefficients ��, for � > 	0 , must satisfy some regularity 

conditions to ensure that the unconditional variance of ��is finite. From the structure of the model, it is seen 

that large squares of past shocks,{����
� }���

� , imply a large conditional variance,��
�,  for the innovation, ��. 

Consequently, ��tends to assume a large value (in modulus). This means that, under the ARCH framework, 
large shocks tend to be followed by another large shock. 
 
2.3.2 GARCH model 
 
Although the ARCH model is simple, it often requires many parameters to adequately describe the volatility 
process of a share price return. As a functional alternative, [29] proposed a useful extension known as the 
generalized ARCH (GARCH) model. The GARCH (q, p) is defined as; 
 

��
� = 	� + 	

�
∑

� = 1
������

′� +

�
∑

� = 1
������

� ,                                                                                          (6) 

 

where � > 0,�� ≥ 0,�� ≥ 0,���
	���(�,�)

∑
� = 1

(�� + 	��)< 	1 (Tsay, 2010). 

 
Here, it is understood that �� = 0,  for � > �, and �� = 0, for � > �. The latter constraint on �� + 	��  implies 
that the unconditional variance of ��

′  is finite, whereas its conditional variance,��
�, evolves over time. In most 

cases, estimates of the GARCH (1,1) model on returns yield �� + 	�� ≈ 1, and this results in an explosive 
process, that is, the volatility process is not mean-reverting. So, the conditional variance is nearly integrated 
(Integrated GARCH model) [14].  
 
2.3.3 EGARCH model 
 
The Exponential GARCH (EGARCH) model represents a major shift from ARCH and GARCH models 
[30]. Rather than model the variance directly, EGARCH models the natural logarithm of the variance, and so 
no parameter restrictions are required to ensure that the conditional variance is positive. The EGARCH (q, p) 
is defined as,   
 

����
� 	= 	� + 	∑ ������

�
��� 	+ 	∑ �� �|����| − �2 �⁄ ��

��� + 	∑ ��
�
��� ������

� .                                   (7) 

 

Alternatively, EGARCH(q, p) model with respect to student-t distribution can be represented by 
 

����
� 	= 	� + 	∑ ������

�
��� 	+ 	∑ �� �|����| −

�√����(���) �⁄

(���)�(� �)√�⁄
��

��� + 	∑ ��
�
��� ������

� ,                        (8) 
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where �� is the asymmetric coefficient. In the original parameterization of Nelson (1991), p and r were 
assumed to be equal. The process is covariance stationery if and only if ∑ ��

�
��� < 1. The �� parameter thus 

signifies the leverage effect of ����. Again, we expect �� to be negative in real applications [14]. 
 
2.3.4 GJR-GARCH model 
 
The GJR GARCH (q, p) model [31] is a variant, represented by  
 

��
� 	= 	�	+ 	∑ ������

��
��� 	+ 		∑ ����������

��
��� 	+ 	∑ ������

��
�	�� ,                                                        (9) 

 
or written as 
 

��
� 	= 	�	+ 	∑ (�� + 	������)����

��
��� 	+ 	∑ ������

��
�	�� ,                                                                    (10) 

 
where ���� is an indicator for negative ����, i.e. 
 

���� 		= 		�
0			��		����		< 0,
1			��		����		≥ 		0,

�  

 
and ��,��, and ��  are non-negative parameters satisfying conditions similar to those of GARCH models.  

Also, the introduction of indicator parameter of leverage effect, ����  in the model accommodates the 
leverage effect, since it is supposed that the effect of  ����

�  on the conditional variance ��
�  is different 

accordingly to the sign of����. From the model, it is obvious that a positive ����  contributes ������
�  to ��

�, 
whereas a negative ���� has a larger impact (�� + 	��)����

�  with �� > 0 as established by (Tsay, 2010). The 
model uses zero as it threshold to separate the impacts of past shocks (see [28,14]). 
 

2.4 GARCH-in-mean model 
 
The mean equation (3) is modified to obtain GARCH-in-mean model in (11) such that the return series 
depends on its variance. The specification of GARCH-in-mean model implies that there are serial 
correlations in the return series (see [14]). 
 

�� = �� + 	���
� + ��,                                                                                                                       (11) 

 
where the parameter �  is the variance functional coefficient. Thus, the presence of variance functional 
coefficient ��

�, indicates that the return series has serial correlation, which implies that the return series is 
related to its variance. 
 

3 Results and Discussion 
 
3.1 Data 
 
Data collection was based on a secondary source as documented in the records of the Nigerian Stock 
Exchange. The data on daily closing share prices of the sampled bank (Zenith Bank) from January 3, 2006, 
to November 24, 2016, were obtained through contactcentre@nigerianstockexchange.com. Since the data 
were obtained from a credible and secured source hence reliable. The data analyses were implemented using 
Gretl 1.10.1 [32] and Rugarch 1.4-1 [33]. 
 

3.2 Interpretation of time plot 
 
The share price series of the Nigerian bank considered were found to be nonstationary given the random 
fluctuations away from the common mean (see Fig. 1).  
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Fig. 1. Share price series of Zenith Bank 
 

Stationarity was achieved by transforming the share price series using equation (1) and the transformed 
series was found to cluster around the common mean and thus indicated the presence of heteroscedasticity 
(see Fig. 2).  
 

3.3 Modeling joint ARIMA-GARCH-type processes of return series of Zenith Bank 
 
Based on Box and Jenkins procedures, out of the several models identified tentatively, the following joint 
ARIMA-GARCH-type models with respect to both normal (norm) and student-t (std) distributions were 
considered (see Table 1). 
 

Comparing the values of the information criteria of the models as indicated in Table 1, it is shown that the 
information criteria for ARIMA(2,1,1)-GARCH(1,1)-std model is the smallest, followed by ARIMA(2,1,1)-
GJR-GARCH(1,1)-std mode, although they are characterized by several non-significant parameters. 
However, ARIMA(2,1,1)-EGARCH(1,1)-std model, which is next to ARIMA(2,1,1)-GJR-GARCH(1,1)-std 
model has all its parameters significant except the constant term of the mean equation, which assumes the 
value of zero. Hence, the ARIMA(2,1,1)-EGARCH(1,1)-std model is selected as the appropriate 
heteroscedastic model for the return series of the Bank. 
 

The model was found to be adequate given that the p-values corresponding to weighted Ljung-Box Q 
statistics at lags 1, 8 and 14 on standardized residuals, weighted Ljung-Box Q statistics at lags 1, 5 and 9 on 
standardized squared residuals and weighted Lagrange Multiplier statistics at lags 3, 5 and 7 are all greater 
than 5% level of significance (see Table 2). The hypotheses of no autocorrelation and no remaining ARCH 
effect are not rejected.  

 

3.4  Modeling GARCH-in-mean-EGARCH processes of the return series of Zenith 
Bank 

 

All the parameters of joint GARCH-in-Mean-EGARCH(1,1)-std model are significant at 5% level of 
significance except the constant term of the GARCH-in-Mean equation which assumes the value of zero. 
The GARCH-in-Mean coefficient, whose significance points to the presence of serial correlation in the 
return series, is also of interest (see Table 3).  
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Table 1. Output of ARIMA-GARCH-type models of return series of Zenith Bank 
 
Model             Parameter      Estimate s.e t-ratio p-value Information criteria 

AIC BIC HQIC 

ARIMA(2,1,1)- 
GARCH 

(1,0)-std 

� − 1.38e�� 1.2e�� − 1.1518 0.2494 −6.4622 −6.4469 − 6.4567 

�� − 1.0182 0.0094 − 108.3242 0.0000 

�� − 0.0828 0.0211 − 3.9297 0.0001 

��       0.9268 0.0197 47.0444 0.0000 

� 6.4e�� 6.0e�� 10.7403 0.0000 

�� 0.9990 0.1339 7.4598 0.0000 

ARIMA(2,1,1)- 
GARCH 

(2,0)-norm 

�       5.11e�� 1.85e�� 2.7590 0.0058 −6.3503 −6.3350 − 6.3448 

�� 0.8695 0.0208 41.7691 0.0000 

�� 0.1140 0.0202 5.6563 0.0000 

�� − 0.9529 0.0022 − 442.0869 0.0000 

�       5.1e�� 2.	0e�� 20.9116 0.0000 

�� 0.4918 0.0463 10.6297 0.0000 

�� 0.2357 0.0314 7.5012 0.0000 
 ARIMA(2,1,1)- 
GARCH (2,0)-std 

� 		− 2.48e�� 2.3e�� − 1.0367 0.29987 − 6.5041 −6.4866 − 6.4978 
�� 0.8644 0.0212 40.8256 0.0000 
�� 0.1193 0.0211 5.6551 0.0000 
�� 	− 0.9722 0.0011 − 851.2935 0.0000 
� 4.0e�� 4.0e�� 11.2777 0.0000 
�� 0.6418 0.0754 8.5143 0.0000 
�� 0.3572 0.0553 6.4607 0.0000 

ARIMA(2,1,1)- 
GARCH 
(1,1)-norm 

� 7.4e�� 1.4e�� 5.4230 0.0000 −6.4261 −6.4108 − 6.4206 
�� 0.1655 0.3888 0.4256 0.6704 
�� 5.9e�� 0.0386 0.0015 0.9988 

�� 		− 0.2458 0.3883 − 0.6330 0.52670 
� 2.0e�� 0.0000 11.6607 0.0000 
�� 0.1753 0.0125 13.9806 0.0000 

�� 0.8237 0.0092 89.6875 0.0000 
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Model             Parameter      Estimate s.e t-ratio p-value Information criteria 
AIC BIC HQIC 

ARIMA(2,1,1)- 
GARCH(1,1)-std 

�       0.0000 0.0000 − 0.0035 0.9972 −7.0699 −7.0524 − 7.0635 

�� − 0.1192   0.9558 − 0.1247 0.9007 

�� 0.0011 0.0860 0.0129 0.9897 

�� 0.0139 0.9550 0.0145 0.9884 

� 0.0000 0.0000 0.0000 1.0000 

�� 0.2646 0.0101 26.3116 0.0000 

�� 0.7252 0.0055 131.5636 0.0000 

ARIMA(2,1,1)- 
EGARCH(1,1)-
norm 

� 2.22e�� 9.5e�� 2.33943 0.0193 − 6.4624 −6.4448 −6.4560 

�� − 0.0068 0.0139 -0.4929 0.6221 

�� − 0.0061 0.0276 − 0.21981 0.8260 

�� − 0.0719 0.0226 − 3.18238 0.0015 

� − 0.6502 0.0034 − 191.7116 0.0000 

�� − 0.0040 0.0160 − 0.2489 0.8034 

��       0.9260 1.9e�� 4871.3044 0.0000 

�� 0.3794 0.0207 18.3618 0.0000 
ARIMA(2,1,1)- 
EGARCH(1,1)-std 

� �. ���� 0.0000 	�. ���� 0.2276 −�. ���� −�. ���� −�. ���� 
� � 		− �. ���� 0.0106 − 29.0801 0.0000 
� � �. ���� 0.0171 2.8972 0.0038 
�� �. ���� 0.0105 ��. ���� 0.0000 
� − �. ���� 8.62��� − 33.7888 0.0000 

�� − �. ���� 9.8��� − 7150.4179 0.0000 

��      0.9996 6.3e�� 15825.7924 0.0000 
�� �. ���� 9.8e�� 7147.6333 0.0000 

ARIMA(2,1,1)- 
GJR-GARCH(1,0)-
norm  

� − 4.1e�� 2.0e�� − 260.0268 0.0000 1.6422 1.6576 1.6478 
�� 1.7704 0.0049 363.9136 0.0000 
�� − 1.2088 0.0019 − 642.61109 0.6056 
�� 0.7873 6.41e�� 1228.7631 0.0000 

� 0.0000 1.0e�� 0.0952 0.92418 
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Model             Parameter      Estimate s.e t-ratio p-value Information criteria 
AIC BIC HQIC 

�� 				0.961136 0.0029 328.0539 0.0000 

�� 0.8486 0.0064 131.9359 0.0000 
�� 0.0754 0.0364 2.072042 0.0383 

ARIMA(2,1,1)- 
GJR-GARCH(1,0)-
std 

� 							− 4.32e�� 2.57e�� − 1.677346 0.0935 − 6.4675 − 6.4499 − 6.4611 
��        0.8733 0.0216 40.3732 0.0000 
��        0.1086 0.0217 5.0124 1.0e�� 
�� − 0.9684 0.0012 − 810.3464 0.0000 
	� 6.3e�� 6.0e�� 10.9327 0.0000 

�� 0.993393 0.1474 6.7378 0.0000 
�� 0.0112 0.1536 0.0730 0.9418 

ARIMA(2,1,1)- 
GJR-GARCH(2,0)-
norm  

� − 1.21e�� 9.9e�� − 1.2223 0.2216 − 6.3556 − 6.3359 − 6.3485 

�� 0.8713 0.0233 37.3883 0.0000 

�� 0.1115 0.0234 4.7763 0.0000 

�� − 0.9526 0.0014 − 659.3565 0.0000 

� 5.0e�� 2.0e�� 20.8695 0.0000 

�� 0.3549 0.0468 7.5802 0.0000 

�� 0.1918 0.0383 5.0032 1.0e�� 

�� 0.3147 0.0845 3.7230 0.0002 

�� 0.0804 0.0561 1.4328 0.1519 

ARIMA(2,1,1)- 
GJR-GARCH(2,0)-
std 

� − 3.46e�� 2.52e�� − 1.3744 0.1693 − 6.5037 − 6.4817 − 6.4957 

�� 0.8722 0.0091 96.194 0.0000 

�� 0.1181 0.0090 13.111 0.0000 

�� − 0.9811 9.5e�� − 1.0310 0.0000 

� 4.0e�� 4.0e�� 11.367 0.0000 

�� 0.6411 0.0911 7.0376 0.0000 

�� 0.2869 0.0614 4.6756 3.0e�� 

�� − 0.0047 0.1105 − 0.0042 0.9663 

�� 0.1467 0.0906 1.6205 0.1051 
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Model             Parameter      Estimate s.e t-ratio p-value Information criteria 
AIC BIC HQIC 

ARIMA(2,1,1)- 
GJR-GARCH(1,1)-
norm 

�     7.7e�� 1.4e�� 5.6257 0.0000 − 6.4254 − 6.4079 − 6.4191 
��     0.1732 0.1767 0.9802 0.3270 
�� 			− 1.13e�� 0.0342 − 0.0033 0.9974 
�� 			− 0.2540 0.1921 − 1.3223 0.1861 
�    2.0e�� 0.0000 4.1180 3.8e�� 
��    0.1775 0.0330 5.3738 0.0000 
��    0.8243 0.0239 34.5612 0.0000 
�� 		− 0.0056 0.0370 − 0.1528 0.8785 

ARIMA(2,1,1)- 
GJR-GARCH(1,1)-
std 

�     0.0000 0.0000 0.306023 0.75959 − 7.0480 − 7.0282 − 7.0408 
�� 			− 0.0417 0.4469 − 0.0933 0.9257 
�� 			− 0.0029 0.0578 − 0.0509 0.9594 
�� 			− 0.0813 0.4390 − 0.1851 0.8531 
�    0.0000 0.0000 0.0000 1.0000 
��    0.2737 0.0186 14.7192 0.0000 
��    0.7013 0.0067 104.9602 0.0000 
��    0.0367 0.0295 1.2459 0.2128 

 
Table 2. Diagnostic checking for ARIMA-GARCH-type model of return series of Zenith Bank 

 

Model 
 
 

      Standardized residuals Standardized squared residuals 
Lag Weighted LB p-value  Lag Weighted LB p-value  Lag Weighted 

ARCH-LM 
p-value 

ARIMA(2,1,1)-
EGARCH(1,1)-std 

1 0.0014  0.9697 1 0.0014 0.9704 3 0.0014 0.9704 
8 0.0066 1.0000 5 0.0041 1.0000 5 0.0033 0.9999 
14 0.0111 1.0000 9 0.0069 1.0000 7 0.0049 1.0000 

 

 
 
 
 



 
 
 

Moffat and Akpan; AJPAS, 4(2): 1-16, 2019; Article no.AJPAS.49909 
 
 
 

11 
 
 

Table 3. Output of GARCH-in-mean-EGARCH model of return series of Zenith Bank 
 

Model Parameter Estimate s.e t-ratio p-value Information criteria 
AIC BIC HQIC 

GARCH-in-Mean-
EGARCH(1,1)-std 

� 0.0000 0.0000 0.15021 0.8806 −6.9012 −6.8793 −6.8933 
�� 0.6845 0.0040 170.0493 0.0000 
�� 0.0428 0.0038 11.3871 0.0000 
�� − 0.7089 0.0041 − 170.894 0.0000 
� 0.0428 0.0043 9.8773 0.0000 
� − 0.1279 0.0029 − 43.9733 0.0000 
�� − 0.6616 2.72e�� − 2436.7359 0.0000 
�� 0.9904 3.8e�� 26149.3241 0.0000 

�� 0.6632 2.72e�� 2433.8259 0.0000 
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Fig. 2. Return series of Zenith Bank 
 
The model was found to be adequate given that the p-values corresponding to weighted Ljung-Box Q 
statistics at lags 1, 8 and 14 on standardized residuals, weighted Ljung-Box Q statistics at lags 1, 5 and 9 on 
standardized squared residuals and weighted Lagrange Multiplier statistics at lags 3, 5 and 7 are all greater 
than 5% level of significance [see Table 4]. The hypotheses of no autocorrelation and no remaining ARCH 
effect are not rejected.  
 

Table 4. Diagnostic checking for GARCH-in-Mean-EGARCH models of return series of  
Zenith Bank 

 
Model Standardized residuals Standardized squared residuals 
GARCH-in-
Mean-
EGARCH(1,1)
-std 

Lag Weighted 
LB 

p-
value  

Lag Weighted 
LB 

p-
value  

Lag Weighted 
ARCH-
LM 

p-value 

1 0.0008  0.978 1 0.0009 0.9757 3 0.0009 0.9757 
8 0.0059 1.0000 5 0.0028 1.0000 5 0.0022 0.9999 
14 0.0099 1.0000 9 0.0046 1.0000 7 0.0033 1.0000 

 

3.5 Effects of serial correlation on parameters of ARIMA-GARCH-type model 
 
Substantial biases are being introduced into the parameters of the ARIMA(2,1,1)-EGARCH(1,1)-std model 
when the possible existence of serial correlation is ignored as indicated in Table 5. That is, in the presence of 
serial correlations, the Autoregressive of order 1, ARCH and GARCH parameters were reduced by 0.0751, 
0.1965 and 0.0001, respectively while Autoregressive of order 2 Coefficient, Moving Average of order 1 
Coefficient, Constant term of the variance equation and asymmetric parameters were hyped by 0.0424, 
0.1077, 0.0319 and 0.1959, respectively. Hence, it can be deduced that the presence of serial correlations, 
the parameters of ARIMA-GARCH-type models are biased. 
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Table 5. Biased effects of serial correlations on the parameters of ARIMA(2,1,1)-EGARCH(1,1)-std 
model of Zenith Bank 

 
Parameter ARIMA(2,1,1)-

EGARCH(1,1)-
std Model fitted to 
Returns Series of 
Zenith Bank 

GARCH-in-Mean-
EGARCH(1,1)-std 
Model fitted to 
Returns Series of 
Zenith Bank 

 Biases 
introduced 

Constant Term (�) 0.0000 0.0000 0.0000 
Autoregressive of order 1 Coefficient (��) 0.6094 0.6845 − 0.0751 
Autoregressive of order 2 Coefficient (��) 0.0852 0.0428 0.0424 
Moving Average of order 1 Coefficient (��) − 0.6012 − 0.7089 0.1077 
Garch-in-Mean Coefficient (�) 0.0428 - - 
Constant Term (�) − 0.0960 − 0.1279 0.0319 
ARCH Coefficient (�) − 0.8581 − 0.6616 − 0.1965 
GARCH Coefficient(�) 0.9903 0.9904 − 0.0001 
Asymmetric Coefficient	(�) 0.8591 0.6632 0.1959 

 

In brief, the findings of this study showed that serial correlations exist in the return series of the bank 
understudy. Thus building an ARIMA(2,1,1)-EGARCH(1,1)-std model without accounting for the existence 
of serial correlations results in biased parameters as indicated in Table 5. Consequently, the extent of bias 
associated with the existence of serial correlation was appraised by GARCH-in-Mean-EGARCH(1,1)-std 
model as shown in Table 3. 
 
Although this study showed similarity to the work of (25) by confirming that EGARCH model is suitable to 
the return series of Zenith Bank Plc, yet, it provides enough evidence of substantial improvement by 
modifying the mean equation of the model to account for the presence of serial correlations. In addition, the 
introduction of the variance parameter in the mean equation creates a feedback mechanism between 
heteroscedasticity and returns.  
 
By implication, the study revealed that the return is positively related to its variance, which implies that any 
high increase in conditional variance would likely lead to a high increase in the returns. 
 

4 Conclusions 
 
In summary, the findings of this very study revealed that the standard Joint ARIMA- GARCH-type model is 
not sufficient for capturing serial correlations and their application without considering the existence of 
serial correlations often results in biased parameters. Consequently, the GARCH-in-Mean-GARCH-type 
model provided the much-needed modification that accounts for the existence of serial correlations in return 
series. Therefore, the formulation of GARCH-in-Mean equation by incorporating variance component 
ensures that the risk-return relationship is properly depicted. It is recommended that the similar formulation 
be undertaken by replacing the variance component with the standard deviation or probably the natural 
logarithm of the variance in future studies.  
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