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Abstract: In this article, we present a free-vertex tetrahedral finite-element representation of irreg-
ularly shaped small bodies, which provides an alternative solution for estimating asteroid density
distribution. We derived the transformations between gravitational potentials expressed by the
free-vertex tetrahedral finite elements and the spherical harmonic functions. Inversely, the density
of each free-vertex tetrahedral finite element can be estimated via the least-squares method, assum-
ing a spherical harmonic gravitational function is present. The proposed solution is illustrated by
modeling gravitational potential and estimating the density distribution of the simulated asteroid
216 Kleopatra.

Keywords: asteroid or comet; tetrahedral finite element; gravitational model; density distribution;
spherical harmonics

1. Introduction

Asteroids, as remnants of the early stages of planet formation, have the potential
to advance knowledge about the origin of the solar system. Knowledge of the internal
structure of asteroids is of great significance for understanding the origin, evolution, and
current state of asteroids [1]. Although the interior cannot be observed directly, other
information can be used to assist in gaining an up-to-date understanding. For example, in
the study of the internal structure of planetary moons, Durante et al. [2] used flyby data
to determine the gravitational field to degree and order 5, which improved the estimated
value of tidal Love number k2 and determined that Titan has a strongly differentiated
interior. Cappuccio et al. [3] used Ganymede’s gravity field and tide response, determined
by Doppler and range data from a 500 km circular orbit in the 3GM experiment simulation,
to provide critical information for accurately modeling Ganymede’s internal structure.
However, the size of most asteroids is smaller than these moons, and we have less prior
knowledge of the internal structure, although many asteroid exploration missions have
measured their gravity fields [4–6]. Additionally, many asteroids are considered to be
rubble pile asteroids, and their internal composition and structure may be unconstrained [7].
Therefore, if it is possible to estimate the internal structure of asteroids with a tiny amount
of information about them (only the gravity field and shape data are available); this will
be of great help for research on asteroids. What factors are related to the estimation of the
internal structure of asteroids? Since it is difficult to directly detect the internal structure, we
can indirectly obtain the distribution of the internal structure from the density and gravity
field information of asteroids. Density is indeed a fundamental property for understanding
their composition and internal structure [1], which means that the density of asteroids may
reflect their internal composition. Otherwise, the asteroid gravity field implies information
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about the density and internal structure of asteroids. An accurate gravity field will help
asteroid exploration missions, such as in the design of frozen orbits [8]. Therefore, this
paper aims to establish a new gravity field model of asteroids that can be used to estimate
their density distribution. The performance of density estimation is investigated in two
cases: (1) the internal structure with no prior information; and (2) the internal structure
with prior information.

There are three fundamental solutions for modeling the gravitational field of an aster-
oid (or a comet): the spherical harmonic function [9], the polyhedron model [10], and the
mascon method [11]. As each of these solutions has its pros and cons, a series of improved
models have been proposed to either increase the computational efficiency or improve
the fineness of computing irregularly shaped asteroid gravitation [12–16]. Among these
improved models, the tetrahedral finite-element method (FEM) [17,18] attracts the most
attention since it combines the advantages of the polyhedron (excellent asteroid irregular
surface representation) and the mascon (non-uniform density distribution representation)
approaches. The basic idea of the tetrahedral FEM is to use tetrahedral elements to fill up an
asteroid’s spatial shape, and the faces of the outer-layer elements approximate the asteroid’s
irregular surface. The volume of each tetrahedral element is determined by the specific
meshing method with either coarse meshes or fine meshes. In the literature, there are two
representative types of finite element meshes in the tetrahedral FEM, which are depicted in
Figure 1: centroid-vertex meshes and free-vertex meshes. The former was first proposed by
Scheeres et al. [16], in which at least one of the vertexes of all finite elements is constrained
at the center of mass of the asteroid. However, this approach cannot directly express the in-
ternal density distribution of asteroids, such as the rubble piles model [19,20], the elongated
bi-lobed model (4179 Toutatis [21] and comet 67P/Churyumov–Gerasimenko [22]) and the
hypothetical model (the planar cut model, the surface layer model, the one core model,
the two-core model, and the torus model, proposed by Takahashi et al. [23]) . In contrast,
the free-vertex meshes can remove the constraint assumed in the centroid-vertex meshes,
providing a more flexible solution for generating tetrahedral finite elements. Therefore,
this article focuses on presenting the free-vertex tetrahedral finite-element representation
and its use for estimating the density distribution of irregularly shaped asteroids, which
may be helpful for obtaining the internal structure of these small bodies.

(a) (b)

Figure 1. Tetrahedral finite elements: (a) centroid-vertex; (b) free-vertex.

The concept of the tetrahedral FEM for asteroid shape representation can be traced
independently back to the concepts of the mascon method and the polyhedron model. To
overcome the shortcomings of the mascon method in describing the shapes of asteroids,
Pearl and Hitt proposed the tetrahedral FEM and higher-order polyhedral FEM meshes
(which are called polyhedral-dual meshes, different from the polyhedral model) [24], and
they found that the number of mascons derived from the FEM meshes can be reduced by
90% compared with the uniformly distributed mascons [14]. Pearl et al. [25] then com-
pared the mascons derived from different FEM meshes with the polyhedron model and
showed that the FEM-based mascons are more accurate for computing asteroid gravitation
than the polyhedron model in some specific regions, such as a thin region that hugs the
surface of the asteroid. Moreover, Rathinam et al. [26] suggested that the mascons based
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on the octree approach (a mesh generation method of FEM) are more computationally
efficient than the polyhedron model. On the other hand, the tetrahedral FEM can also be ob-
tained by improving the polyhedral model, which assumes a constant density distribution.
Park et al. [27] used finite element spheres and finite element cubes to approximate the
shape of asteroids, but there are gaps between the elements, and the surface is not smooth.
Recently, Yu et al. [18] proposed an approach of computing the gravitational potentials
of the binary asteroids using the free-vertex tetrahedral finite element and showed the
effectiveness of the tetrahedral FEM. Yin et al. [17] found that the free-vertex tetrahedral
finite element model can fit the structure of small bodies better than the polyhedron model.

The tetrahedral FEM with the variable meshing method is more suitable for the study
of the asteroid density distribution than the polyhedron model and the mascon method, as
it provides representations of the non-uniform density distribution of an asteroid with finer
meshes. However, it is difficult to obtain the internal density distribution of the asteroid
even if we can detect the gravity field and shape of the asteroid. A solution for estimating
the density distribution of asteroids was proposed by Scheeres et al. [16]; the method uses
the relationship between the spherical harmonic coefficients and the tetrahedral model
to determine the density of each centroid-vertex tetrahedron by applying a least-squares
method. Then, Park et al. [27] applied an alternative method using navigation measure-
ments such as station-to-spacecraft tracking to estimate density distribution. However,
the asteroid density distribution is quite unlikely to be accurately approximated by the
centroid-vertex tetrahedral elements. Takahashi et al. [23,28] and Ledbetter et al. [29]
divided the centroid-vertex tetrahedron element into layers, but the accuracy of density
distribution estimation is still limited.

In summary, the motivation of this study is to investigate the use of the free-vertex
tetrahedral FEM for representing an asteroid’s spatial shape and density distribution. It is
deemed a follow-up advancement of density distribution estimation using the strip-shaped
elements observed in the centroid-vertex tetrahedral FEM [16]. In Section 2, the free-vertex
tetrahedral finite element gravitation model is introduced. In Section 3, we derive the
transformations between gravitational potentials expressed by the free-vertex tetrahedral
finite elements and the spherical harmonic functions, and a least-squares method is used to
estimate the density of each free-vertex tetrahedral finite element. In Section 4, we consider
the asteroid 216 Kleopatra [30] as an example to demonstrate the free-vertex tetrahedral
FEM. Conclusions are presented in Section 5.

2. Free-Vertex Tetrahedral Finite Element Gravitation Model

The gravitational potential and force caused by each free-vertex tetrahedral finite
element (which can also be called a tetrahedron) can be calculated by applying the polyhe-
dron method [10], and then the values of each potential and force are added up to obtain
the gravitational potential Upoly−tetra and the gravitational force ∇Upoly−tetra for a specific
asteroid, which are given below.

Upoly−tetra =
1
2

G
n

∑
i=1

ρi

(
∑

e∈edges
ri

e · Ei
e · ri

e · Li
e − ∑

f∈ f aces
ri

f · F
i
f · r

i
f ·ω

i
f

)
(1)

∇Upoly−tetra = −G
n

∑
i=1

ρi

(
∑

e∈edges
Ei

e · ri
e · Li

e − ∑
f∈ f aces

Fi
f · r

i
f ·ω

i
f

)
, (2)

where G is the universal gravitational constant, i is the serial number of the tetrahedral
elements, ρi is the density of the numbered tetrahedral element, e represents the edge of
the tetrahedron, and f represents the triangular face by three vertices of the tetrahedron.
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Fi
f = n̂ f n̂ f

Ei
e = n̂An̂A

e + n̂Bn̂B
e

Li
e =

∫
e

1
r ds =

∫ Pj
Pl

1
r ds = ln

r′ l+r′ j+el j
r′ l+r′ j−el j

ωi
f =

∫∫
triangle

∆z
r3 dS = 2 · arctan

rl ·rj×rk

rlrjrk+rl(rj ·rk)+rj(rk ·rl)+rk(rl ·rj)
,

(3)

where Fi
f is the dyad related to the triangular face, Ei

e is the dyad related to the edge, Li
e

is the dimensionless factor of each edge, ωi
f is the dimensionless factor of each face, n̂ f

represents the outward-pointing surface normal direction vector of the face, and n̂ f
e is the

normal direction vector of the edge of the face lying in the face plane, which is orthogonal to
both the face normal vector and the along-the-edge vector, and points outward. A and B are
the symbols of the two faces that have common edges, respectively. rl , rj and rk represent
the vectors from the field point to the three vertices of the triangle surface, respectively,
and rl , rj, and rk are the modulus of the corresponding vectors. The edges and faces, as
well as the normal direction vectors, are shown in Figure 2.

Vertice 1

edge

Face B

12 21,e e Vertice 2

Vertice 3 on Face A

Vertice 3 on Face B

Face A

12
ˆ A
n

ˆ
B

n

21
ˆ B
n

ˆ
A

n

Figure 2. Triangular out-of-plane normal direction vector and edge normal direction vector.

The free-vertex tetrahedral finite element model is obtained by mesh generation meth-
ods [31]. The structured mesh is composed of horizontal and vertical lines that cross
orthogonally at intersections called nodes. Generally, the structured mesh generation
process is best achieved by discretizing the physical domain defined by the square or rect-
angular boundary; thus, it is mainly suitable for simple geometric shapes. In unstructured
meshes, the nodes used to discretize the two-dimensional physical domain change from
being ordered orthogonally in the structured mesh to seemingly randomly placed. These
nodes are connected to other nodes via triangular or quadrilaterally shaped subdomains or
elements. In the three-dimensional physical domain, the most common types of elements
are tetrahedrons and hexahedrons. The generation of unstructured meshes requires more
thought and effort than structured meshes. In general, one puts more nodes (or elements)
near surfaces and in regions where activity (or steep gradients) is likely to occur. Therefore,
the unstructured mesh is a better choice for irregularly shaped asteroids. The unstructured
mesh can be generated by the octree algorithm [32], the Delaunay algorithm [31] or the
advancing front algorithm [33]. The Octree algorithm uses a cube to cover the entire shape
area that needs to be meshed, and then continuously subdivides the cube according to
the requirements of the mesh size. The advancing front algorithm generates tetrahedral
elements from the boundary of the meshed area and continues to advance to the center
until the entire area is covered by tetrahedral elements. The Delaunay algorithm requires
the tetrahedron to satisfy the Delaunay criterion [31]; that is, there are no other points in
the circumscribed ball of each tetrahedron, except for its own four vertices. A significant
advantage of the Delaunay algorithm is that it can make the minimum angle of each tetra-



Aerospace 2021, 8, 371 5 of 21

hedron element in the mesh system constituted by a given point set as large as possible,
allowing us to obtain tetrahedron elements with as high a quality as possible.

The asteroid 216 Kleopatra is taken to generate the free-vertex tetrahedral meshes
as an example. As shown in Figure 3, the shape model of Kleopatra is modeled as the
polyhedron model and the free-vertex tetrahedral FEMs. The meshes of the tetrahedral
FEMs are generated by the Delaunay triangulation algorithm [31] with different maximum
element growth rates (the difference between the sizes of two adjacent elements).

(a) (b)

(c) (d)

Figure 3. The asteroid 216 Kleopatra shape model: (a) the shape model; (b) polyhedron model;
(c) free-vertex tetrahedral FEM with 1467 tetrahedrons (sectional plane); (d) free-vertex tetrahedral
FEM with 160,217 tetrahedrons (sectional plane) (the color corresponds to the size of the tetrahedron:
green means a large size, and red means a small size).

Since we generate the free-vertex tetrahedral FEMs, if we obtain the prior information
about the density distribution, we can calculate the gravitational field of the asteroid.
Although the meshes of these models are different, the gravity field calculated by each
FEM is valid if the density distribution of the corresponding mesh can be obtained. This
also shows that the meshes of the free-vertex tetrahedral FEMs are not restricted by the
internal structures of the asteroid. On the contrary, if the internal structures are known,
the divided tetrahedral finite elements can be combined into the corresponding structures,
which is also the reason that we propose the free-vertex tetrahedral FEM.

3. Transformation for Gravity Field Expressions
3.1. Transformation from Free-Vertex Tetrahedral FEM to Spherical Harmonics with
Simplex Integral

The spherical harmonic expansion of the gravitational potential [34] is expressed by:

Uspherical =
GMA

r

{
N

∑
n=0

n

∑
m=0

( re

r

)n
Pnm(sin ϕ)[Cnm cos mλ + Snm sin mλ]

}
, (4)

where r is the distance of the field point to the center of the expansion, and λ and ϕ are the
longitude and latitude of the field point, respectively. Pnm(sin ϕ) is the associated Legendre
polynomial; re is the radius of the reference sphere, which represents the convergence range
of the series; MA is the total mass of the asteroid; n and m are the degree and order of the
expansion, respectively; and Cnm and Snm are the spherical harmonic coefficients that are
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specified up to degree N. The coefficient C00 = 1 and the total number of gravitational
coefficients is (N + 1)2, with 2n + 1 coefficients at each degree n.

The fully normalized harmonic coefficients, C̄n,m and S̄n,m, can be calculated analyti-
cally by approximating the extended body with a swarm of points [35]:[

C̄n,m
S̄n,m

]
= ∑

i∈pointmasses

[
c̄n,m(x′ i, y′ i, z′ i)
s̄n,m(x′ i, y′ i, z′ i)

]
Mi, (5)

where Mi is the point’s mass, and c̄n,m and s̄n,m are integrands of the point’s normalized
spherical harmonic coefficients. (x′, y′, z′) are the coordinates that represent the point.

Then, the point is replaced by a tetrahedron. The density ρi of each tetrahedron is
assumed to be constant, and the coefficients C̄n,m and S̄n,m can be written as the following
integral form:[

C̄n,m
S̄n,m

]
=
∫∫∫

extended body

[
c̄n,m
s̄n,m

]
dm =

∫∫∫
extended body

ρi

[
c̄n,m
s̄n,m

]
dx′dy′dz′. (6)

The recurrent relationships for integrands c̄n,m and s̄n,m proposed by Werner et al. [35]
are as follows:

sectorial :

n = 0 :
[

c̄0,0
s̄0,0

]
= 1

M

[
1
0

]
n = 1 :

[
c̄1,1
s̄1,1

]
= 1√

3M

[
x′
/

re
y′
/

re

]
n > 1 :

[
c̄n,n
s̄n,n

]
= 2n−1√

2n(2n+1)

[
x′
/

re −y′
/

re
y′
/

re x′
/

re

][
cn−1,n−1
sn−1,n−1

]
vertical :[

c̄n,m
s̄n,m

]
= (2n− 1)

√
(2n−1)

(2n+1)(n+m)(n−m)
z′
re
×
[

c̄n−1,m
s̄n−1,m

]
−
√

(2n−3)(n+m−1)(n−m−1)
(2n+1)(n+m)(n−m)

(
r′
re

)2
[

c̄n−2,m
s̄n−2,m

]
subdiagonal :[

c̄n,n−1
s̄n,n−1

]
= 2n−1√

2n+1
z′
re

[
c̄n−1,n−1
s̄n−1,n−1,

]

(7)

where re is the radius of the reference sphere, and r′ =
√

x′2 + y′2 + z′2.
Although the recurrence relationships of spherical harmonic coefficients are given,

they cannot be applied directly to calculate c̄n,m and s̄n,m of the free-vertex tetrahedral
finite elements proposed in this article as the coordinates (x′, y′, z′) cannot be obtained
directly for a tetrahedron. Furthermore, as the asteroid model used in Werner et al. [35]
and Scheeres et al. [16] is the centroid-vertex tetrahedral finite element, we cannot simply
refer to their calculation results of the spherical harmonic coefficients. Therefore, we
re-derived the calculation of spherical harmonic coefficients based on the free-vertex
tetrahedral FEM in this study. The coordinates (x′, y′, z′) of the given free-vertex tetrahedral
elements P0P1P2P3 are denoted as (x0, y0, z0), (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3), which
are different from those defined in [35]: (0, 0, 0), (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3). In
order to solve Equation (6), variable conversion is needed, and the coordinates (x′, y′, z′)
are expressed with standard simplex coordinates (u0, u1, u2, u3) by the relation [36]:

1
x′

y′

z′

 =


1 1 1 1
x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3




u0
u1
u2
u3

. (8)

Here, the simplex refers to the free-vertex tetrahedral finite element, and the standard
simplex is defined with coordinates (u0, u1, u2, u3) : (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).
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The expansion of Equation (8) is:

1=u0 + u1 + u2 + u3
x′(u0,u1, u2, u3) = x1u1 + x2u2 + x3u3 + x0u0
y′(u0,u1, u2, u3) = y1u1 + y2u2 + y3u3 + y0u0
z′(u0,u1, u2, u3) = z1u1 + z2u2 + z3u3 + z0u0.

(9)

We use Equation (9) to replace x′, y′ and z′ in Equation (7). The integrands c̄n,m and
s̄n,m can be represented as follows:[

c̄n,m(x′, y′, z′)
s̄n,m(x′, y′, z′)

]
→
[

c̄n,m(u0, u1, u2, u3)
s̄n,m(u0, u1, u2, u3)

]
= ∑

i0+i1+i2+i3=n

[
ᾱi0,i1,i2,i3
β̄i0,i1,i2,i3

]
u0

i0 u1
i1 u2

i2 u3
i3 . (10)

Here, ᾱh,j,k,l and β̄h,j,k,l are the tetranomial coefficients of coordinates u0, u1, u2, and u3.
We provide examples of these in Appendix A.

Then, Equation (6) can be rewritten as follows:[
C̄n,m
S̄n,m

]
=
∫∫∫

extended body

[
c̄n,m
s̄n,m

]
dm

= ∑
simplices

ρi

(
det J ∑

i0+i1+i2+i3=n

[
ᾱi0,i1,i2,i3
β̄i0,i1,i2,i3

]
×
∫∫∫ 1=u0+u1+u2+u3

standard simplex
u0

i0 u1
i1 u2

i2 u3
i3 du1du2du3

)
.

(11)

Here, the matrix J is the Jacobian matrix.

J ≡ ∂(x′ ,y′ ,z′)
∂(u1,u2,u3)

=


∂x
∂u1

∂x
∂u2

∂x
∂u3

∂y
∂u1

∂y
∂u2

∂y
∂u3

∂z
∂u1

∂z
∂u2

∂z
∂u3



det J =

∣∣∣∣∣∣
x1 − x0 x2 − x0 x3 − x0
y1 − y0 y2 − y0 y3 − y0
z1 − z0 z2 − z0 z3 − z0

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

1 x0 y0 z0
1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3.

∣∣∣∣∣∣∣∣
(12)

Since the tetrahedral simplex integral is:∫ 1=u0+u1+u2+u3
simplex u0

i0 u1
i1 u2

i2 u3
i3 du1du2du3

= i0!i1!i2!i3!
(i0+i1+i2+i3+3)! ,

(13)

the expression of the spherical harmonic coefficients for the free-vertex tetrahedral finite
element model is:[

C̄nm
S̄nm

]
= ∑

simplics
ρi

(
det J

(n + 3)! ∑
i0+i1+i2+i3=n

i0!i1!i2!i3!
[

ᾱi0,i1,i2,i3
β̄i0,i1,i2,i3

])
. (14)

The integration of the simplex in Equation (13) is shown in Appendix B. In the process
of analytically calculating simplex integrals, the tetranomial i0!i1!i2!i3! becomes increasingly
complex as the degree of the spherical harmonic coefficients grows, and the dimensions of
tetranomial coefficients become enormous due to the recurrent relationships in Equation (7),
which requires large amounts of computing resources. In order to save computation time,
the analytical solution can be approximated by numerical integration methods in finite
element analysis [37], such as the Hammer integral [38,39]. This study used the Hammer
integral to simplify calculations for the research. The details of the Hammer integral are
shown in Appendix C.
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3.2. Inverse Transformation from Spherical Harmonics to Free-Vertex Tetrahedral FEM with the
Least-Squares Method

From Equation (14), an inverse transformation can be used to obtain the density of
each free-vertex tetrahedron. The least-squares method proposed by Scheeres et al. [16]
was used to evaluate the density distribution of the asteroid.

To estimate the density, the serial numbers of tetrahedrons and vertex coordinates
were obtained. The usual form of the spherical harmonic gravitational potential is shown in
Equation (4), and the potential needs to be rewritten by the tetrahedral finite element model:

Usphe−tetra =
p

∑
i

GViρi
r

[
N

∑
n=0

n

∑
m=0

( re

r

)n
P̄nm(sin θ)

(
C̄i

nm cos mλ + S̄i
nm sin mλ

)]
, (15)

where i is the index of the tetrahedron, p is the number of tetrahedrons, N is the degree of
the highest calculated spherical harmonic coefficient, and C̄i

nm and S̄i
nm are the normalized

spherical harmonic coefficients of the corresponding tetrahedron. Since the volume of the
tetrahedron Vi can be calculated from the geometric shape, due to the constant density
hypothesis for each tetrahedron, the only unknown in the gravitational potential is the
density ρi.

The expression of the gravitational potential is different from the usual spherical
harmonic gravitational potential. The usual form of Equation (4) is necessary to calculate
the spherical harmonic coefficients of the whole asteroid and to consider the total mass
of the asteroid, while in the free-vertex tetrahedral FEM, it is necessary to calculate the
spherical harmonic coefficients corresponding to each tetrahedron separately, and then the
potential of each tetrahedron is summed. Therefore, M refers to the mass of the tetrahedron
in Equation (7).

Ideally, for the same asteroid, the gravitational potentials calculated by different
models at the same location should be the same. For the inverse transformation, a least-
squares method is used.

The loss function of the general least-squares method is given as:

J
(
X̂
)
=
(
Z− HX̂

)T(Z− HX̂
)
= min . (16)

Here, X is the state vector, and the density ρi is the element of the vector. X̂ is the estimation
of the state vector. Z is the measurement vector, and H is the measurement matrix. In
this study, the measurement is the real gravitational potential of the asteroid Uspherical in
Equation (4), and the calculated measurement HX̂ is the gravitational potential Usphe−tetra
in Equation (15).

In order to minimize the function of the above equation, it is necessary to satisfy:

∂J
∂X

∣∣∣∣
X=X̂

= −2HT(Z− HX̂
)
. (17)

Therefore, under the ideal situation, the estimated state vector X̂ can be expressed as:

X̂ =
(

HT H
)−1

HTZ. (18)

We can find that:

H =


Vi
M C̄1

10
Vi
M C̄2

10 · · · Vi
M C̄p

10
Vi
M C̄i

11
Vi
M C̄2

11 · · · Vi
M C̄p

11
Vi
M S̄i

11
Vi
M S̄2

11 · · · Vi
M S̄p

11
...

...
...

...

 (19)



Aerospace 2021, 8, 371 9 of 21

Then, we can use the spherical harmonic coefficients to express Equation (18) and
simplify the estimated solution as:

ρ =

([
Vi
M

C̃i
nm

]T[Vi
M

C̃i
nm

])−1[
Vi
M

C̃i
nm

]T[
C̃nm

]
, (20)

where ρ is the density vector, Vi is the volume of the tetrahedron, M is the mass of
the asteroid, and C̃nm is a vector representation of the spherical harmonic coefficients:[
C̃nm

]
= [C̄10,C̄11, S̄11, C̄20, C̄21, S̄21, · · · , C̄NN , S̄NN ].

If we measure the spherical harmonic coefficients of the asteroid, we can use weighted
least-squares to calculate the state, which can be expressed as:

ρ =

([
Vi
M

C̃i
nm

]T
WC̃

[
Vi
M

C̃i
nm

])−1[
Vi
M

C̃i
nm

]T
WC̃
[
C̃nm

]
, (21)

where WC̃ is the covariance matrix of the measured true spherical harmonic coefficients.
Then, we can use K and y to denote the matrixes:

K=
[

Vi
M C̃i

nm

]T
WC̃

[
Vi
M C̃i

nm

]
y =

[
Vi
M C̃i

nm

]T
WC̃
[
C̃nm

]
.

(22)

Equation (21) can be abbreviated as:

ρ = K−1y. (23)

The dimension of ρ is [p× 1], and the dimension of C̃nm is
(
(N + 1)2 − 1

)
× 1. If the

number of tetrahedrons is equal to (N + 1)2 − 1, K is an invertible matrix, and there is a
unique solution. If the number of constraints (tetrahedrons) is greater than the number
of unknowns (the density of each tetrahedron), which is an overdetermined problem,
the normal matrix is invertible, and the density of each tetrahedron can be obtained.
When the number of tetrahedrons exceeds (N + 1)2 − 1, the number of equations is less
than the number of unknowns. If the normal matrix is not invertible and the system is
under-determined, then the density cannot be solved by normal methods. In order to
solve both cases at the same time, singular value decomposition (SVD) was used to solve
Equation [16].

The singular value decomposition was performed by [40]:

K = USV T , (24)

where U is an l ×m orthogonal matrix and V is an m×m orthonormal matrix. Matrix S
is an m×m diagonal matrix containing all the solved singular values, but if the ratio of
the largest singular value to the smallest singular value is more than 1016, the condition
number of the entire matrix will be abnormally large, which will cause the original problem
to be poorly conditioned. Thus, the equation solution is very sensitive to disturbances. We
selected condition number 1013 to obtain an appropriate S̃−1.

The final solution of the least-squares method is:

ρ = VS̃−1UTy. (25)

From this derivation process, it can be found that the accuracy of the density esti-
mation depends on the number of tetrahedrons and the degree and order of spherical
harmonic coefficients.
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4. Density Distribution Estimation

In this section, a simulation in 216 Kleopatra is presented to verify the effectiveness
of the free-vertex tetrahedral FEM for density distribution estimation. The mass of the
asteroid 216 Kleopatra is 4.64× 1018 kg, and the reference radius of Kleopatra is 112 km.
The coarse mesh that consists of 1467 tetrahedrons shown in Figure 3c was used. The
volume of Kleopatra calculated by the proposed tetrahedral FEM is 6.8144× 105 km3; thus,
its bulk density (the mass to volume ratio of Kleopatra) is 6.809 g/cm3. In these simulations,
tetrahedrons can be used alone or assembled into polyhedrons. Then, we assigned densities
to each tetrahedron (or polyhedron) to compute the “true” gravity potential, and the
coefficients of the spherical harmonic function can be obtained from Equation (14). Then,
the least-squares method was employed on the same shape discretization to verify that
we recovered the proper densities for each tetrahedron (or polyhedron). Since the true
gravitational field was fully known in our tests, the covariance matrix WC̃ became an
identity matrix.

4.1. Density Distribution Estimation for Each Tetrahedron

We first estimated the density distribution when each tetrahedron acts as an inde-
pendent unit of the free-vertex tetrahedral finite-element model. This indicates that the
densities for elements of a mass distribution are estimated without prior information on
the geometry of the distribution. This is of great significance for asteroid exploration
missions. At the early stage of these missions, we do not particularly understand the
internal structure of the target asteroid. If we can use shape information and the spherical
harmonic gravitational field information in the mission to detect the asteroid, we can find
out whether the interior of the asteroid is uniform, or whether there are density mutations
or hollows.

Since the number of tetrahedrons is 1467, which is larger than the dimensions of
the vector of the spherical harmonic coefficients (n ≤ 37), the problem of estimating the
density distribution is under-determined. Therefore, we needed to study the performance
of the method under this condition. The effectiveness and limitations of this method
were investigated by the sensitivity of estimating a density mutation and the estimation
accuracy of different numbers of density mutations by different degrees and orders of
gravity field coefficients.

4.1.1. Density Mutation Assumptions

Three cases were chosen, namely, single mutations (No. 1426), double mutations
(No. 35/1426), and ten mutations (No. 2/35/87/624/675/790/960/1307/1401/1426),
to estimate the density mutation. We assumed an a priori density of 10 g/cm3 for the
mutations in the three cases; the remaining tetrahedrons without density mutations took
the original bulk density. These three assumptions are shown in Figure 4a.

Figure 4b shows the location of the three density mutation cases in each tetrahedral
model, and different densities correspond to different colors. To display the result better,
the tetrahedrons with density mutations selected in this study are on the surface of the
asteroid. The tetrahedrons with single and double mutations are distributed at both ends
of the asteroid, and the ten mutations are evenly distributed. For example, tetrahedrons
No. 2/35/1401 and No. 1426 are at the ends, and tetrahedrons No. 624/790/960 are near
the center of the asteroid.
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(a) (b)

Figure 4. Density distribution assumption: (a) density value; (b) location of density mutation.

4.1.2. Validation Test

We tested the sensitivity of our approach with the under-determined case (using a
single mutation as an example). Tetrahedron No. 1426 was assumed to have an inconstant
density from 0 to 10 g/cm3, and the densities of the remaining 1466 tetrahedrons were
6.809 g/cm3. The true spherical harmonic gravitational field was assigned to degree and
order 8. The density of all 1467 tetrahedrons was initialized and assumed to be equal to
6.809 g/cm3. We computed the correction to this initial assumption.

Figure 5 shows the estimated density of tetrahedron No. 1426 and the minimum,
maximum, and mean of the other 1466 tetrahedrons as a function of the assumed density
of that tetrahedron. The red solid line with the red points is the estimated density of
tetrahedron No. 1426, and the blue dotted line with the blue circle is the mean value
of the remaining tetrahedrons. The yellow and magenta dotted lines with symbols of
the yellow star and the magenta asterisk show the minimum and maximum values of
the remaining tetrahedrons, respectively. Table 1 lists the absolute error of the estimated
density of tetrahedron No. 1426. The results show that, when the density of a tetrahedron
is different from the others in an under-determined system, we can separate it from other
tetrahedrons, although the density of the special tetrahedron cannot be restored accurately.
In particular, when the assumed value is very close to the initial value, the accuracy of
density estimation is the best.

Table 1. Validation test result of the single-mutation case.

Assumed Density
of Tetrahedron

No. 1426 (g/cm3)

Estimated Density
of Tetrahedron

No. 1426 (g/cm3)

Absolute Error of the
Estimated Density of

Tetrahedron No. 1426 (g/cm3)

0 5.1111 5.1111
1 5.3604 4.3604
2 5.6098 3.6098
3 5.8592 2.8592
4 6.1085 2.1085
5 6.3579 1.3579
6 6.6073 0.6073
7 6.8566 0.1434
8 7.1059 0.8940
9 7.3554 1.6446
10 7.6047 2.3953
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Figure 5. Density distribution estimation solution as a function of the assumed density with the
single tetrahedron numbered 1426.

4.1.3. Influence of High-Order Spherical Harmonics

In these tests, the influence of the different degrees and orders of the spherical har-
monic coefficients on the results of estimating different number density mutations were
inspected. Under the premise of three density mutation assumptions (single mutation,
double mutations, and ten mutations), we assumed that the densities of the tetrahedrons
with density mutations were 10 g/cm3, and the density of the other 1466/1465 and 1657
tetrahedrons was assumed to be 6.809 g/cm3, respectively. The true spherical harmonic
gravitational field was specified up to degree and order 40. Then, we initially assumed
that the densities of all 1467 tetrahedrons were equal to the bulk density 6.809 g/cm3

and calculated the correction for these initial values under the three density mutation
assumptions cases. The density estimation results of the mutations and the other tetrahe-
drons as a function of the harmonic degree used for the “true” gravity field are shown in
Figures 6–8, respectively. The solid lines of the three figures show the estimated densities of
the mutational tetrahedrons, and the dotted lines with the blue circle, the yellow star, and
the magenta asterisk represent the mean, minimum and maximum values of the remaining
tetrahedrons, respectively. Table 2 shows the error statistics of the mutations for three
density mutation assumptions (we chose degrees 8, 15, 20, and 40 as examples). Figure 9
shows the density estimation results for the three mutation cases by the spherical harmonic
gravitational field with degree and order 20. The left plot is the density of each tetrahedron,
and the right plot shows the locations of the tetrahedrons, in which the density value is
higher as the color becomes closer to yellow.

It should be noted that the densities of the mutant tetrahedrons were estimated more
accurately as the degree became higher. In contrast, as the number of mutant tetrahedrons
increased and their position distribution in the asteroid became increasingly random, the
error of density estimation grew. When the spherical harmonic coefficients increased from
degree 1 to 40, the density of the single mutation (tetrahedron No. 1426) was estimated
from 6.833 g/cm3 to 9.984 g/cm3, moving closer to the assumed density. Meanwhile, the
density of tetrahedron No. 35 with the double mutations increased from 6.815 g/cm3

to 9.967 g/cm3, and the estimated error of ten mutations also increased as the degree
became larger.

Comparing the results in Figure 9 with the prior density distributions in Figure 4, it
can be found that, when the least-squares method is applied, the density of the mutational
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tetrahedron can be well estimated. However, we can also see that the densities of the
surrounding tetrahedrons will be significantly affected by the mutant tetrahedron, while the
tetrahedrons far away from this mutant tetrahedron are almost unaffected. The maximum
density of the remaining tetrahedrons is bigger than tetrahedron No. 35 when the harmonic
degree is less than 10, as shown in Figure 7. The reason for this is that, due to the close
distance between the mutation and its adjacent tetrahedron, it is difficult to distinguish
the mutation during the density estimation process. Furthermore, as the degree of the
harmonic coefficients is lower, the “measured” gravity field contains less information.
Thus, the estimated densities of some tetrahedrons adjacent to the mutation are similar to
those of the corresponding mutant, which could be larger than the other tetrahedrons. In
addition, to balance the values of the spherical harmonic coefficients of the whole asteroid,
some tetrahedrons near the mutation have density values that should be smaller than the
other tetrahedrons.

Figure 6. Density estimation solution as a function of the degree and order of the measured gravita-
tional field, computed for the single mutation.

Figure 7. Density estimation solution as a function of the degree and order of the measured gravita-
tional field, computed for the double mutations.
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Figure 8. Density estimation solution as a function of the degree and order of the measured gravita-
tional field, computed for the 10 mutations.

In particular, from the results of the ten mutations case shown in Figures 8 and 9, we
can find that the estimated densities of the tetrahedrons, which are closer to the ends of the
asteroid, are more accurate than the others, such as tetrahedrons No. 2/35/1401 and 1426.
The densities of the tetrahedrons, which are close to the center of the asteroid, such as No.
624/675/790, were estimated to be no more than 8 g/cm3—that is, only about 1 g/cm3

larger than the mean of the remaining tetrahedrons without density mutations.

Table 2. The error statistics of the mutations for three density mutation assumptions.

Degree of
Harmonics
Coefficients

Single
Mutation Double Mutations 10 Mutations

No. 1426
g/cm3

No. 35
g/cm3

No. 1426
g/cm3

Mean
g/cm3

Mean
g/cm3

Max
g/cm3

Min
g/cm3

8 2.3952 2.7569 2.3852 2.5711 2.8880 3.1015 2.5712
15 1.1614 1.7914 1.1782 1.4848 2.1138 3.0453 1.1184
20 0.6193 1.0616 0.6184 0.8399 1.7505 2.9491 0.6786
40 0.0155 0.0325 0.0161 0.0243 1.2106 2.894 0.0033

The above results can be explained by the appearance of the dumbbell-shaped asteroid
Kleopatra. A tetrahedron close to the center of an asteroid could be called a near-center
tetrahedron; on the contrary, the tetrahedrons distributed at both ends could be called
distal tetrahedrons. Since the size of the tetrahedral element is relatively uniform in the
model used in this study, the gravitational perturbation caused by the tetrahedron around
the near-center tetrahedron is very close to it. Furthermore, it is difficult to distinguish
whether the difference in the gravitational potential caused by the density mutation is
caused by the mutational tetrahedron or its adjacent tetrahedrons. At the same time, this
also explains that, even when the degree of the spherical harmonic coefficients is 40, the
density of each tetrahedron cannot be solved accurately. The dimension of the equations is
(40 + 1)2 − 1, which is more than the number of tetrahedral elements, at 1467. Due to the
existence of near-centered tetrahedrons, Equation (23) is easily linearly related. Therefore,
a positive definite system and a unique equation solution cannot be obtained.



Aerospace 2021, 8, 371 15 of 21

(a) (b)

Figure 9. Density results for the three cases of density mutations by the spherical harmonic gravita-
tional field with degree and order 20: (a) density value; (b) location of density mutation.

The results show that the spherical harmonic coefficients can be used to estimate the
density distribution of asteroids. When mutations of density exist inside an asteroid, they
can be detected. If the mutation is in a distal tetrahedron, the density can be estimated
accurately, while for a near-center tetrahedron, the density anomaly near it can be estimated.

4.2. Density Distribution Estimation for Known Structures

If a structural hypothesis of asteroids can be obtained through other detection meth-
ods, estimating the densities of the known structures will be easier than assuming each
tetrahedron is an unknown variable. In this section, it is assumed that we are exploring
the asteroid 216 Kleopatra and its internal structure has been ascertained. It is, therefore,
necessary to estimate the density of each constituent structure.

We refer to the one- and two-core models proposed in [23] and combine them to form
a new structure, as shown in Figure 10. Assuming sphere structures with a radius of 10 km
at the center and both ends of the target asteroid, the density near the center of mass is
10 g/cm3, the density of the end along the positive x-axis is 8 g/cm3, and the density of the
end along the negative x-axis is 0. Then, the entire asteroid model is divided into four parts
with different densities. It is important to state that, when dividing the four parts, they are
not strict spheres. Judging the property of the tetrahedron is based on whether the center
of the tetrahedron element is within the spherical range of the given structure. For this
process, fine meshing can be used to obtain more precise structural divisions in the future.

r =10 km 

30 g cm 

310 g cm 

r =10 km 

38 g cm 

r =10 km 

One Core Model Two Cores Model

Figure 10. Assumed structure of asteroid 216 Kleopatra.
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Since there are only four unknowns, the system is positive definite, and all the densities
can be solved accurately using the appropriate degree and order of spherical harmonic
coefficients. The errors of the four parts are shown in Figure 11. When the degree is more
than 2, the errors can reach the order of 10−13 g/cm3. However, when the degree of the
coefficient is 1, we cannot obtain a precise result. As the dimension of Equation (21) is three,
it is less than the number of unknowns (four), leading to an under-determined system.

Figure 11. Density errors of the four parts with a gravitational field of degree and order 1 to 8.

The density data are not listed, but the density distribution of the hypothetical struc-
ture in the model is given, as shown in the cross-sectional view of Figure 12 (different colors
correspond to different density values). Therefore, as long as the true spherical harmonic
coefficients are obtained during the exploration, the density distribution of the asteroid
with a known structure can be effectively estimated.

Figure 12. The density distribution of the known structure in the cross-sectional view.

5. Conclusions

This study proposed a free-vertex tetrahedral finite element representation, which is
intended to study the internal density distribution of asteroids. The explicit formulation of
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the free-vertex representation was obtained, based upon which we derived its transforma-
tion to the spherical harmonics, enabling us to estimate the internal structure of a massive
body from its external gravitational field. The performance of the density distribution
was evaluated with the asteroid 216 Kleopatra as an example, showing that: (1) under
the condition of only the gravity field and shape data of the asteroid being available, the
free-vertex tetrahedral FEM can be used to randomly model the interior of the asteroid,
and the density mutation inside the asteroid can be detected; and (2) when otherwise
known for the internal structure of the asteroid, the free-vertex tetrahedral FEM can be
associated with the corresponding structure, and the density can be estimated accurately.
Although the current results exhibited the potential of this free-vertex tetrahedral FEM for
estimating the internal structure of an asteroid, we also remarked that the accuracy of the
density mutation estimate is related to the location. For the benchmarking test, the density
estimation becomes more accurate as the mutations approach the two ends of the asteroid
and the density of the near-center meshes is difficult to distinguish using our method.
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Appendix A. Examples of the Tetranomial Coefficients

The integrands c̄n,m and s̄n,m should be calculated using the standard simplex coor-
dinates. x′, y′, z′ in Equation (7) need to be replaced by (u0, u1, u2, u3). However, the final
expression of the integrands c̄n,m and s̄n,m contains two sets of tetranomial coefficients,
which is not an explicit expression. Below is an example of the (u0, u1, u2, u3) tetranomial
coefficients ᾱh,j,k,l and β̄h,j,k,l when the degree and order of the harmonic coefficients are
both equal to 1.

When n = 1 and m = 1, the variable substitution process of the integrands c̄1,1 and
s̄1,1 is given by[

c̄1,1
s̄1,1

]
=

1√
3M

[
x′
/

re
y′
/

re

]
⇒ 1√

3M

[
x1u1+x2u2+x3u3+x0u0

rey1u1+y2u2+y3u3+y0u0
re

]
(A1)

Therefore, the integrands c̄1,1 and s̄1,1 can be rewritten as

[
c̄1,1
s̄1,1

]
=

1√
3M · re

[
x1u0

0u1
1u0

2u0
3 + x2u0

0u0
1u1

2u0
3 + x3u0

0u0
1u0

2u1
3 + x0u1

0u0
1u0

2u0
3

y1u0
0u1

1u0
2u0

3 + y2u0
0u0

1u1
2u0

3 + y3u0
0u0

1u0
2u1

3 + y0u1
0u0

1u0
2u0

3

]
(A2)

The tetranomial coefficients can be written as

ᾱ0,1,0,0 = x1√
3M·re

, ᾱ0,0,1,0 = x2√
3M·re

, ᾱ0,0,0,1 = x3√
3M·re

, ᾱ1,0,0,0 = x0√
3M·re

β̄0,1,0,0 = y1√
3M·re

, β̄0,0,1,0 = y2√
3M·re

, β̄0,0,0,1 = y3√
3M·re

, β̄1,0,0,0 = y0√
3M·re

(A3)

Then, c̄1,1 and s̄1,1 can be rewritten as
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[
c̄1,1
s̄1,1

]
=

[
ᾱ0,1,0,0u0

0u1
1u0

2u0
3 + ᾱ0,0,1,0u0

0u0
1u1

2u0
3 + ᾱ0,0,0,1u0

0u0
1u0

2u1
3 + ᾱ1,0,0,0u1

0u0
1u0

2u0
3

β̄0,1,0,0u0
0u1

1u0
2u0

3 + β̄0,0,1,0u0
0u0

1u1
2u0

3 + β̄0,0,0,1u0
0u0

1u0
2u1

3 + β̄1,0,0,0u1
0u0

1u0
2u0

3

]
(A4)

Repeating the above variable substitution process, we can obtain all the tetranomial
coefficients ᾱh,j,k,l and β̄h,j,k,l at any degree and order. The integrands c̄n,m and s̄n,m can be
abbreviated as[

c̄n,m(u0, u1, u2, u3)
s̄n,m(u0, u1, u2, u3)

]
= ∑

i0+i1+i2+i3=n

[
ᾱi0,i1,i2,i3
β̄i0,i1,i2,i3

]
u0

i0 u1
i1 u2

i2 u3
i3 (A5)

Appendix B. Simplex Integral

The simplex (the tetrahedral finite element) has the simplest shape in each dimension
space, such as a point for zero dimension, a directed line segment for one-dimensional
space, and a directed triangle for two-dimensional space; for three-dimensional space, it is
a tetrahedron. Unlike ordinary definite integrals, simplex integrals use a simplex as the in-
tegration domain, which can be divided into positive and negative directions. The simplex
used in this study is the three-dimensional simplex if there are no special instructions.

The three-dimensional simplex integral expression is

S =
∫∫∫

U0U1U2U3

u0
i0 u1

i1 u2
i2 u3

i3 du1du2du3 (A6)

It can be expanded as

S =
∫∫∫ u0+u1+u2+u3=1

u0,u1,u2,u3≥0
ui0

0 ui1
1 ui2

2 ui3
3 du1du2du3

=
∫ 1

0

∫ 1−u3

0

∫ 1−u3−u2

0
ui0

0 ui1
1 ui2

2 ui3
3 du1du2du3

=
∫ 1

0

∫ 1−u3

0
ui3

3 ui2
2

(∫ 1−u3−u2

0
ui1

1 (1− u3 − u2 − u1)
i0du1

)
du2du3

(A7)

The internal integration can be calculated using partial integration:

∫ 1−u3−u2

0
ui1

1 (1− u3 − u2 − u1)
i0 du1

=
∫ 1−u3−u2

0
d
(

1
i1 + 1

ui1+1
1

)
(1− u3 − u2 − u1)

i0

=
1

i1 + 1
ui1+1

1 (1− u3 − u2 − u1)
i0
∣∣∣∣1−u3−u2

0

−
∫ 1−u3−u2

0

1
i1 + 1

ui1+1
1 d

(
(1− u3 − u2 − u1)

i0
)

= −
∫ 1−u3−u2

0

1
i1 + 1

ui1+1
1 d

(
(1− u3 − u2 − u1)

i0
)

=
∫ 1−u3−u2

0

i0
i1 + 1

ui1+1
1 (1− u3 − u2 − u1)

i0−1 du1

=
∫ 1−u3−u2

0

i0(i0 − 1)
(i1 + 1)(i1 + 2)

ui1+2
1 (1− u3 − u2 − u1)

i0−2 du1

=
∫ 1−u3−u2

0

i0(i0 − 1)(i0 − 2)
(i1 + 1)(i1 + 2)(i1 + 3)

ui1+3
1 (1− u3 − u2 − u1)

i0−3 du1

=
∫ 1−u3−u2

0

i0(i0 − 1)(i0 − 2) · · · 2
(i1 + 1)(i1 + 2)(i1 + 3) · · · (i1 + i0 − 1)

ui1+i0−1
1 × (1− u3 − u2 − u1)

1 du1

=
∫ 1−u3−u2

0

i0(i0 − 1)(i0 − 2) · · · 1
(i1 + 1)(i1 + 2)(i1 + 3) · · · (i1 + i0)

ui1+i0
1 du1

=
∫ 1−u3−u2

0

i0!i1!
(i1 + i0)!

ui1+i0
1 du1 =

∫ 1−u3−u2

0

i0!i1!
(i1 + i0 + 1)!

d
(

ui+i0+1
1

)
=

i0!i1!
(i1 + i0 + 1)!

ui1+i0+1
1

∣∣∣∣1−u3−u2

0
=

i0!i1!
(i1 + i0 + 1)!

(1− u3 − u2)
i+i0+1

(A8)
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The simplex integral can eventually be obtained by repeating the partial integration to
Equation (A7):

S =
∫ 1

0

∫ 1−u3

0
ui3

3 ui2
2 du2du3

∫ 1−u3−u2

0
ui1

1 (1− u3 − u2 − u1)
i0du1

=
∫ 1

0
ui3

3

∫ 1−u3

0
ui2

2 (1− u3 − u2)
i1+i0+1du2du3

i0!i1!
(i1 + i0 + 1)!

=
∫ 1

0
ui3

3 (1− u3)
i2+i1+i0+1du3

i0!i1!i!
(i2 + i1 + i0 + 2)!

=
i0!i1!i2!i!

(i3 + i2 + i1 + i0 + 3)!

(A9)

Appendix C. Hammer Integral

Finite element numerical integration obtains approximate numerical integration re-
sults by selecting several special integration points and weight coefficients on the standard
simplex. The Hammer integral uses an interpolation function and assumes its value change
law to be between grids to calculate an approximate solution. Therefore, the accuracy of the
numerical algorithm is slightly worse than that of the simplex integral, but the calculation
efficiency is greater. In the finite element method, the three-dimensional simplex integral
of Equation (A6) can be expressed as

I =
∫ 1

0

∫ 1−L1

0

∫ 1−L2−L1

0
F(I1, L2, L3, L4)dL3dL2dL1 (A10)

Table A1. The coordinates of the integration points, weighting coefficients and error magnitudes of
the three-dimensional tetrahedral element.

Number of
Integration Points Weighting Coefficients Coordinates of

the Integration Points
Error

Magnitude

1 A1 = 1 1/4,1/4,1/4,1/4 O(h2)

4 B4 = 1/4 a = 0.58541020
b = 0.13819660 O(h3)

5 A1 = −4/5
B4 = 9/20

a = 1/2
b = 1/6 O(h4)

Given the coordinates of the integration points, weighting coefficients, and error mag-
nitudes of the three-dimensional tetrahedral element through Table A1, and the numerical
integration can be derived as∫ 1

0

∫ 1−L1
0

∫ 1−L1−L2
0 F(L1, L2, L2, L4)dL3dL2dL1

= A1F
(

1
4 , 1

4 , 1
4 , 1

4

)
+ B4{F(a, b, b, b) + F(b, a, b, b)

+F(b, b, a, b) + F(b, b, b, a)

(A11)
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