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Abstract: There are some problems such as uncertain thresholds, high dimension of monitoring
parameters and unclear parameter relationships in the anomaly detection of aero-engine gas path.
These problems make it difficult for the high accuracy of anomaly detection. In order to improve the
accuracy of aero-engine gas path anomaly detection, a method based on Markov Transition Field
and LSTM is proposed in this paper. The correlation among high-dimensional QAR data is obtained
based on Markov Transition Field and hierarchical clustering. According to the correlation analysis
of high-dimensional QAR data, a multi-input and multi-output LSTM network is constructed to
realize one-step rolling prediction. A Gaussian mixture model of the residuals between predicted
value and true value is constructed. The three-sigma rule is applied to detect outliers based on the
Gaussian mixture model of the residuals. The experimental results show that the proposed method
has high accuracy for aero-engine gas path anomaly detection.

Keywords: aero-engine gas path; anomaly detection; Markov Transition Field; hierarchical clustering;
LSTM; Gaussian mixture model

1. Introduction

Aero-engine is the heart of an aircraft, and is also the system with high failure rate and
complex maintenance. Working condition of the aero-engine directly affects the reliability
of aircraft, and even the safety of passengers [1]. According to incomplete statistics, more
than 90% of aero-engine failures are related to gas path components, and the corresponding
cost of these failures accounts for 60% of the total maintenance cost. Gas path anomaly
detection is the top priority in aero-engine anomaly detection research [2]. Aero-engine gas
path anomalies usually include intermittent gas path anomalies and persistent gas path
anomalies. Intermittent gas path anomalies are often difficult to be detected because of
their short duration, and the detection of such anomalies currently relies mainly on the
oral reports of pilots. The Quick Access Recorder (QAR) data records the complete flight
process of aircraft [3], and its sampling frequency is up to 1 Hz, which can be applied to
detect anomalies of aero-engine gas path.

In recent years, there are more and more researches on anomaly detection of time
series. For different manifestations of anomalies, there are four categories, including point
anomaly, pattern anomaly, sequence anomaly, and subsequence anomaly. For different
detection principles, there are five categories, including distribution-based methods, depth-
based methods, clustering-based methods, distance-based methods, and density-based
methods. Hao Sun [4] proposed a weakly supervised method based on mapping relation-
ship mining and improved density peak clustering for gas-path anomaly detection of civil
aero-engines. Chen, Jiusheng [5] proposed an adaptive weighted one-class SVM-based
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fault detection method coupled with incremental and decremental strategy. Pérez-Ruiz [6]
proposed a hybrid fault-recognition technique based on regularized extreme learning
machines and sparse representation classification for both fault detection and fault identifi-
cation. Zaccaria, Valentina [7] proposed a probabilistic Bayesian network simulated by an
adaptive performance model for fault detection and identification for engines. Gharoun,
Hassan [8] applied the data-driven methods to analyze the relationship between engine
exhaust gas temperature (EGT) and other parameters of the engine, and proposed one-class
support vector machine to detect faults in each flight. XIE Ji-wei [9] proposed a method
based on Mahalanobis distance for aero-engines health monitoring. Wen Ying [10] pro-
posed an anomaly monitoring method based on self-adaptive kernel principal component
analysis. The above methods have carried out research on the aero-engine anomaly de-
tection and have made certain innovations and breakthroughs. However, the detection
accuracy of the above methods needs a large number of samples for training. Furthermore,
the above methods do not consider the correlation between different monitoring data,
and the applicability of the anomaly detection is not strong. In this paper, different time
series are transformed into Markov transfer matrix, and a hierarchical cluster is applied to
obtain the correlation of time series. Compared with other time series correlation analysis
methods, this method reduces the impact of information loss. Multi-LSTM is applied for
anomaly detection of time series. As a special cyclic neural network, LSTM not only has the
advantages of RNN dynamic memory, but also avoids the gradient disappearance of RNN
and the lack of long and short memory ability. LSTM model has advantages of processing
the nonlinear aero-engine gas path monitoring data, automatically selecting the optimal
time interval and memorizing long-time historical data. Compared with other anomaly
detection methods based on LSTM, the construction of multi-LSTM improves the accuracy
of prediction and improves the accuracy of anomaly detection furtherly.

The rest of this paper is organized as follows. Aero-engine gas path and monitoring
data are introduced briefly in Section 2. In Section 3, the correlation between gas path
monitoring data is analyzed based on Markov Transition Field and hierarchical clustering.
Section 4 constructs the anomaly detection model based on LSTM and Gaussian anomaly
detection model. Section 5 discusses the experiment results and evaluates the accuracy of
proposed anomaly detection model. Finally, Section 6 summarizes the conclusions.

2. Introduction of Aero-Engine Gas Path and Monitoring Data

The research object of this paper is the Airbus A330, Rolls-Royce Trent700 aero-engine
gas path system. The aero-engine and its gas path structure are shown in Figure 1 [11,12].
The aero-engine gas path is composed of Bleed Monitoring Computer (BMC), Temperature
Control Thermostat (ThC), Solenoid Thermostat (Ths), Regulated Pressure Transducer (Pr),
Transferred Pressure Transducer (Pt), PreCooler Exchanger (PCE), OverPressure Valve
(OPV), Fan Air Valve (FAV), Intermediate Pressure Valve (IPCV), High Pressure Valve
(HPV), and so on.

The aero-engine flight phase includes take-off, climb, cruise, and landing. The QAR
data of each phase has different characteristics. During the aero-engine flight phase, the
QAR data of the gas path system includes temperature of precooler 1 (TMP1), temperature
of precooler 2 (TMP2), speed of No.1 engine N1 (N11), speed of No.2 engine N1 (N12),
speed of No.2 engine N1 (N21), speed of No.2 engine N2 (N22), standard atmospheric
pressure height (ALT_STD), pressure of precooler 1 (PRS1), pressure of precooler 2 (PRS2),
and so on. Some QAR monitoring data of aero-engine gas path is shown in Table 1.
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Figure 1. Aero-engine: (a) Diagram of the aero-engine model; (b) Gas path system. 
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cooler, speed of engine N1, speed of engine N2, and pressure of precooler. The gas path 
monitoring data is shown in Figure 2. 

Figure 1. Aero-engine: (a) Diagram of the aero-engine model; (b) Gas path system.

Table 1. QAR data of aero-engine gas path.

Time TMP1 TMP2 N11 N12 N21 N22 ALT_STD PRS1 PRS2

(deg C) (deg C) (%) (%) (%) (%) (feet) (psi) (psi)
10:43:51 134 107 0 0 0 0 −448 37.5 37.5
10:43:52 135 107 0 0 0 0 −448 37.5 37
10:43:53 134 107 0 0 0 0 −448 37 37
10:43:54 135 106 0 0 0 0 −448 35.5 36.5
10:43:55 135 106 0 0 0 0 −448 34.5 37.5
10:43:56 135 107 0 0 0 0 −448 35.5 37.5
10:43:57 137 106 0 0 0 0 −448 36 37.5

The gas path monitoring data of the whole flight phase includes temperature of
precooler, speed of engine N1, speed of engine N2, and pressure of precooler. The gas path
monitoring data is shown in Figure 2.

Since the QAR data of different flight phases have different characteristics, this paper
mainly conducts anomaly detection on the QAR monitoring data of aero-engine gas path
in the cruise stage. The QAR data of cruise stage is shown in Figure 3.
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Figure 2. Monitoring data of QAR aero-engine gas path in whole flight phase: (a) Temperature of precooler; (b) Speed of
engine N1; (c) Speed of engine N2; (d) Pressure of precooler.
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Figure 3. QAR data of aero-engine gas path in cruise phase: (a) Temperature of precooler in cruise phase; (b) Speed of
engine N1 in cruise phase; (c) Speed of engine N2 in cruise phase; (d) Pressure of precooler in cruise phase.
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3. Correlation Analysis of Gas Path Monitoring Data Based on Markov Transition
Field and Hierarchical Clustering

In this section, the correlation of different time series is obtained by calculating the
similarity of Markov Transition Probability Matrix. Based on the similarity of time series,
hierarchical cluster analysis is applied to obtain the correlation of different time series.

Based on the time sequence of aero-engine QAR data, a Markov Transition Matrix is
formed by calculating the Markov Transition Probability of the time series to represent the
correlation of time series [13–15].

IFor a given time series X, the range of the time series is divided into Q parts, then
any Xi in the time series will be mapped to the corresponding qi. At this time, in the order
of time axis, the transfer probability between data points can be calculated as first-order
Markov chain to construct a weighted adjacency matrix W of Q×Q, where wi,j represents
the frequency of quantile qj transferring to quantile qi. After standardization, the generated
matrix W is the Markov Transition Matrix. The matrix is not sensitive to the distribution of
X and the step size of time series ti. In order to reduce the impact of information loss, the
Markov Transition Field is transformed on the Markov Transition Matrix.

M =


vij|x1∈qi ,x1∈qj

· · · vij|x1∈qi ,xn∈qj

vij|x2∈qi ,x1∈qj
· · · vij|x1∈qi ,x2∈qj

...
. . .

...
vij|xn∈qi ,x1∈qj

· · · vij|xn∈qi ,xn∈qj

 (1)

Depending on the length of the original data, the data is converted into Q quantiles,
and a Q×Q Markov Transition Matrix (MTF) is generated, which contains the step size
(i.e., the time axis) i and j in the time series and the transition direction qj. In MTF, Mij is the
probability of qi transferring to qj. MTF increases the time step and position relationship
based on Markov Transition Matrix.

According to the different step-size probabilities of the selected time series point i
to point j, it is represented by different pixels to generate Mij. MTF encodes the transfer
probability of the time series. Mij represents the transition probability between points
with time interval k. When k = 0, the matrix can be taken to the main diagonal Mij, which
represents the probability of each quantile i shifting to itself. In order to reduce the size of
the generated image, facilitate the preservation and improve the computational efficiency,
the transition probability in the subsequence of length m can be added together. The
conversion process of Markov change field is shown in Figure 4.
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The analysis results of QAR data with Markov Transition Field are as shown in
Figure 5.

Based on the Markov Transition Probability Matrix of aero-engine QAR data, the
similarity of the matrix is calculated, and the clustering analysis is carried out to obtain the
correlation between different variables.

Cohesive hierarchical clustering algorithm is a bottom-up clustering algorithm [16,17].
The algorithm flow is shown as Algorithm 1. It takes each sample in the dataset as an
initial class, then merges the two classes with the smallest distance between classes until
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the maximum distance within each class is less than the set threshold, or the number of
classes reaches the set value.

Algorithm 1. Cohesive Hierarchical Clustering Algorithm

Input: candidate sample set, maximum distance threshold ε.
Output: feature clustering result set C.

For Si ∈ D // Use each sample in D as an initial cluster.
Ci← empty set;
Ci← Ci∪Si;
C← C∪Ci;

End for
While Maximum sample distance less than e after merging two classes.

Calculate the distance between the two classes, merge the smallest distance
classes, and select one of them to merge if there are many pairs of smallest distance
classes with the same distance.

End while
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The hierarchical clustering results are as shown as Figure 6.
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According to the clustering results, there is a strong correlation between TMP, PRS,
N1, and N2 for aero-engine gas path.

4. Construction of Anomaly Detection Model Based on Multi-LSTM and Gaussian
Anomaly Detection Model
4.1. Prediction Based on Multi-LSTM

The inputs of LSTM are selected based on the correlation analysis of time series to con-
struct multi-LSTM network. The LSTM prediction principle is shown in Figure 7 [18–20].
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In multi-LSTM model, the key parameters and formulas are shown as follows.

ft = σ
(

W f · (ht−1, xt) + b f

)
(2)

it = σ(Wi · (ht−1, xt) + bi) (3)

c̃t = tanh(Wc · (ht−1, xt) + bc) (4)
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ct = ft ◦ ct−1 + it ◦ c̃t (5)

ot = σ(Wo · (ht−1, xt) + bo) (6)

ht = ot ◦ tanh(ct) (7)

In formula, W and b are the weight matrix and bias of forgetting gate. Formula (6) is
the output of the whole LSTM. The number of neurons in the input layer of LSTM is the
number of input sequences, and the number of output neurons is the number of output
sequences. When predicting the QAR data of aero-engine, one or more future time series
of the aero-engine can be predicted by inputting the current or historical data in a period
of time. Multi-LSTM prediction flow is shown in Figure 8.
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4.2. Gaussian Distribution Model Based on Prediction Error

Gaussian distribution method is a common anomaly detection method [21–23]. Its
basic assumption is that the data set obeys a Gaussian distribution. The probability density
of normal data in the Gaussian distribution is high, and the probability density of abnormal
data in the Gaussian distribution is low. This method has a wide range of applications
and performs well on non-Gaussian data sets. In addition, the Gaussian distribution
method has the advantages of good anomaly detection effect, easy programming, and fast
calculation speed, which can obtain better results for anomaly detection of gas path.

For a data set, the maximum likelihood estimation method can be used to estimate
the mean and variance of each parameter. The specific calculation is shown as follows.

µj =
1
m

m

∑
i=1

xj
i (8)

σ2
j =

1
m

m

∑
i=1

(
xj

i − µj

)2
(9)

In formula, µj represents the mean value of the j parameter. σ2
j represents the variance

of parameter j. xj
i represents the j parameter of the i sample.

After the mean and variance of each parameter are estimated, the probability density
of each parameter in its parameter distribution can be calculated. Assuming that each
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parameter is independent of each other, the probability density of each sample in the
Gaussian distribution is the product of the probability density of all parameters. The
probability density calculation in the dataset distribution is shown below.

p
(

xj
i ; µj, σ2

j

)
=

1√
2πσ2

j

e
−

(xj
i − µj)

2

2σ2
j (10)

p(xi) =
n

∏
j=1

p
(

xj
i ; µj, σ2

j

)
(11)

where p(xi) represents the probability density of xi in the Gaussian distribution of the dataset.
Those samples with low probability density are likely to be abnormal. Assuming that

there is a critical value, normal and abnormal samples can be distinguished by this critical
value. The division of normal and abnormal samples is as follows.

yi =

{
1, p(xi) < ε
0, others

(12)

In the formula, yi represents the anomaly detection results of the i sample; ε represents
threshold. The appropriate critical value is the key to ensure that the Gaussian model can
accurately identify abnormal samples. The selection of the critical value is determined by
the three-sigma rule [24]. The anomaly detection process based on LSTM and Gaussian
model is shown in Figure 9.
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5. Results and Discussion

Data in the experiment is derived from the real QAR data of civil aviation engines.
The experimental environment configuration is shown in Table 2.

Table 2. Experimental Environment Configuration.

Processor Memory GPU Operating System Tensorflow

Intel Core i7-10875H 16 GB GeForce GTX2070 Windows 10 Tensorflow 2.5.0

The parameter settings of multiple-input and multiple-output LSTM network are
shown in Table 3.
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Table 3. Parameters of multi-LTSM prediction model.

Model Parameter Actual Value

Input layer parameters 50 × 8
Hidden layer 1

Neuronal number 100
Prediction step 1
Output layers 8

The Root Mean Square Error (RMSE) is applied to estimate prediction accuracy.

RMSE =

√
1
m

m

∑
i=1

( fi − yi)
2 (13)

where fi and yi represent the predicted value and true value.
The prediction errors of different QAR data are shown in Table 4.

Table 4. Prediction errors of different QAR data.

Monitoring Data RMSE

TMP1 0.619
TMP2 0.742
PRS1 0.581
PRS2 0.586
N11 0.078
N12 0.068
N21 0.065
N22 0.070

After training, the multi-LSTM model is applied for prediction. The residuals between
the predicted value and the actual value are calculated. The residual probability distribution
functions based on the Gaussian mixture model is shown in Figure 10.

The three-sigma rule is applied for anomaly detection. The anomaly detection accuracy
is calculated as follows.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (14)

TP (True Positives) indicates that the prediction result of an actual positive case is a
positive case. FP (False Positives) indicates that the prediction result of an actual negative
case is a positive case. FN (False Negatives) indicates that the prediction result of an actual
positive case is a negative case. TN (True Negatives) indicates that the prediction result of
an actual negative case is a negative case.

The accuracy of anomaly detection is shown in Table 5.

Table 5. The accuracy of anomaly detection.

Monitoring Data Detection Accuracy (%)

TMP1 100
TMP2 98.79
PRS1 99.45
PRS2 100
N11 98.65
N12 99.86
N21 100
N22 98.35
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Figure 10. The residual probability distribution based on the Gaussian mixture model: (a) the residual
probability distribution function of TMP1; (b) the residual probability distribution function of TMP2;
(c) the residual probability distribution function of N11; (d) the residual probability distribution
function of N12; (e) the residual probability distribution function of N21; (f) the residual probability
distribution function of N22; (g) the residual probability distribution function of PRS1; (h) the residual
probability distribution function of PRS2.
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The anomaly detection results are shown in Figures 11–18. The green curve represents
the observed data, the yellow curve represents the curve predicted by multi-LSTM, and
the red curve represents the abnormal value detected by the model.
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According to the anomaly detection results as shown in Table 5 and Figures 11–18, for
anomaly detection of aero-engine gas path, the accuracy of proposed method is over 98%.
The experiment results show the superiority of the method proposed in this paper, and it
can be applied to solve similar time series anomaly detection problems.
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6. Conclusions

In this paper, the correlation among QAR data is analyzed by Markov transition matrix
and hierarchical clustering method. Based on correlation analysis, the key monitoring
data is selected to construct the multi- LSTM network prediction. The residuals between
the predicted value and the real value are calculated, and the probability distribution
of residuals is constructed based on the Gaussian mixture model. Based on the residual
probability distribution, the three-sigma rule is applied for anomaly detection. Experiments
show that the method proposed in this paper can detect the anomaly of aero-engine gas
path accurately, and it is suitable for solving similar anomaly detection problems.
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