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Abstract: In this paper we define a new class of hyperholomorphic functions, which is known as FZ(p, q,5)
spaces. We characterize hyperholomorphic functions in F(p,q,s) space in terms of the Hadamard gap in
Quaternion analysis.
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1. Introduction

uaternions were introduced for the first time by William Rowan Hamilton in 1843 [1].The
Q generalizations of the theory of holomorphic functions in one complex variable is known as

taternion analysis [2-5]. Quaternions are also recognized as a powerful tool for modeling and solving
problems in theoretical as well as applied mathematics [6]. The emergence of a large of software packages
to perform computations in the algebra of the real quaternions [7], or more generally, Clifford algebra has been
enhanced by the increasing interest in using quaternions and their applications in almost all applied sciences
[8,9].

Definition 1. Let 0 < p < 00, —2 < g <00 and 0 < s < oo and let f be an analytic function in . If
17120 = 590 [ 1F P = 2Pz a)dA(z) < o,
aech /D
then f € F(p,q,s). Moreover, if

lim /D F' @)1~ 2?78 (z,a)dA(z) = 0,

la]—1
then f € Fy(p,q,s).

To introduce the meaning of hyperholomorphic functions, let H be the skew field of quaternions. The
element w € H can be written in the form:

w = wy + wyi + wyj + w3k, wp,wi, wr, w3 € R,
where 1,1, j, k are the basis elements of H. For these elements we have the multiplication rules
2= =kK=-1,ij=—ji=kkj=—jk=iki=—ik =]
The conjugate element @ is given by @ = wy — wqi — woj — wsk, and we have the property

ww = ow = ||w||* = wi + w? + wi + w3
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Moreover, we can identify each vector ¥ = (xg, x1, x) € R3 with a quaternion x of the form
X = Xxg + X1i + Xpj.

We will work in the unit ball in the real three-dimensional space, B;(0) C R3. We will consider functions
f defined on B4 (0) with values in H. We define a generalized Cauchy-Riemann operator D and it’s conjugate

5by
_of .of  .9of
Df = dxp Tl oxq +i oxy’

and
Df af af %

0x0 8x1 0xy

For these operators, we have
DD = DD = A;,

where A3 is the Laplacian for functions defined over domains in R3. We denote by ¢,(x) = (a — x)(1 —
ax)~1, |a| < 1, the M&bius transform, which maps the unit ball onto itself.

Let
520 = 52 (ftar )

be the modified fundamental solution of the Laplacian in R3. Let f : B — H be a hyperholomorphic function.
Then [4]:

* B(f) —SUP(l— |x[)*/2[Df (x)],
e Qu(f) = sup Jg |Df(x)|?gP(x,a)dBs.
Definition 2. Let 0 < o < co. The hyperholomorphic a-Bloch space is defined as follows (see[2]):

BY = {fekerD: sup(l—|x[*)%[Df(x)| < ool.
xeB

The little a-Bloch type space B is a subspace of 53 consisting of all f € B* such that

lim (1— [x[*)% |Df(x)| =

|x] =1~
Definition 3. ([10]) Let f be quaternion-valued functionin B. For0 < p < o0, -2 < g < ocand 0 < s < 0. If
S
) = 560 [ IDFI (L= 1) ¥ (1= () ) B < co
then f € F(p,q,s). Moreover, if
S
2,3 2
tim [ [DFP Q-1 ¥ (1= pu(0) ) 2By =0
then f € Fy(p,q,s).
The green function in R3 is defined as (see [11]):

G(x,a) — 1- |§0ﬂ(x)|2'

|1 —ax|
We introduce following new definition of so called hyperholomorphic Fg(p, g, s) spaces.

Definition 4. Let1 < a, p < 00, =2 < g < 00, and s > 0. Assume that f be hyperholomorphic function in the
unit ball By (0). Then, f € F&(p,q,s), if
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F&(p,q,8) = {f € kerD : sup IDf(x)|P(1 — |x|?)342+25 (G(x,a)) "dBy < oo}.
a€B, (0) /B1(0)

The space F§ (p, g, s) is subspace of F(p, q,s) consisting of all functions f € F&(p,q,s), such that

tim [ IDF@IPQ ) (G a) By = 0.
1

la|—1—

Our objective in this article is twofold. First, we study the generalized quaternion space F&(p,q,s) and
characterize their relations to the quaternion Bjj. Second, characterizations F%(p,q,s) function space by the
coefficients of Hadamard gap expansions. The following lemma, we will need in the sequel:

Lemmab5. [12]. Let0 < R < 1,1 < g,a € B1(0) and f : B1(0) — H be a hyperholomorphic function. Then

_ 3. 42+q _
D 1 < D 1 .
[Df (@) < 7TR3(1 — R2)%(1 — |a|?)3 //\/l(a,R)‘ f(x)| aBx

2. Power series expansions in R3

The major difference to power series in the complex case consists in the absence of regularity of the basic
variable x = xg + x1i + x2j and of all of its natural powers x", n = 2,3,.... This means that we should expect
other types of terms, which could be designated as generalized powers. We use a pair y = (y1,y2) of two
regular variables given by N

y1 = x1 —ixg and yp = xp — jxo,

and a multi-index v = (v1,v2), [v[ = (11 +12) to define the v-power of y by a |v|-ary product [5,13,14].

Definition 6. Let v; elements of the set 4y, ...., apy| be equal to y; and v, elements be equal to y,. Then the
v-power of y is defined by

z = W Z aﬂaiz...ai‘v‘, (1)

(i ey ) €T (L[ V])
where the sum runs over all permutations of (1, ...., |[v|).

The general form of the Taylor series of left monogenic functions in the neighborhood of the origin is
given as [14]:

) =Y (L o) ach e

o n=0 ‘V|:n

Theorem 7. [5,15]) Let g(x) be left hyperholomorphic with the Taylor series (2). Then

1—- d _
30800 < X X ol )t ®)
n=1 lv|=n
We introduce the notation H,(x) := Y y/"Ic, and consider monogenic functions composed by H, (x) in
lvl=n""

the following form:
f(x) =Y Hu(x)by, byeH
n=0

Using (3), we have

307

< Y X lad )bl @

n=1 lv|=n
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This is the motivation for another notation,

" ::( Y |cv|)bn| (an > 0), )

[v|=n

finally, we have

307

< Y nay|x|" L (6)
n=1

3. Lacunary series expansions in F%(p, q,s) spaces

In this section, we give a sufficient and necessary condition for the hyperholomorphic function f on B; (0)
of R3 with Hadamard gaps to belong to the weighted hyperholomorphic F%(p, g, s) spaces. The function

f(r)=Y o™ (neN; VkeN) (7)
k
belong to the Hadamard gap class (Lacunary series) if there exists a constant A > 1 such that ”1’;—:1 > A, VkeN.
Characterizations in higher dimensions using several complex variables and quaternion sense [16-18].

Theorem 8. Let f(r) = Y o7 1 ant", witha, > 0.Ifa >0, p > 0. Then

[a-ngmyars ¥ 2, ®
n=0

where ty = Yyey, ar, n €N, Iy = {k:2" <k < 2"+l ke N}
Proof. The prove of this theorem can be obtained easily from Theorem 2.5 of [19] with the same steps. [

Theorem 9. Leta, p > 1, -2 < g < 00,5 > 0,and I, = {k : 2" < k < ontl.f e N}. Suppose that f(x) =
Y. Hy(x)by, b, € H, where Hy(x) be homogenous hyperholomorphic polynomials of degree n, and let a,, be define as
n=0

before in (5). If

Z Z—n(%aq+s—p+1)(2 |ak|)P < o0, )
n=0 kel,
then
15 b 2\%14) s
sup =Df(x)| (1—|x|")2 7*(G(x,a)) dB, < oo, (10)
acBy (0) /B1(0) |2

and f € F&(p,q,9).

Proof. Suppose that (9) holds. Using the equality

1—|ga(®)[> _ (1—1al*)(1—[x]*)
Glx8) = = %4 1—axP ()
where
T—[x[ <l —ax] <T+[x], 1—[af <[1—ax][<1+]a <2 (12)

Then, we get
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p \
(1— [x[2) 2"+ (G(x, a)) dB,

P(l _ |x|2)30‘Tq+25 (1 — ‘alz)s(l — |x|2)s
|1 —ax|3

o N saa 5y (1~ [a2)5(1 — [x[2)
< " n—1 1— 2 +2s dB,
—/Blm)(z”“ . ) = T oy =y

dBy

n=0
) o p
< 2STq+4s/ ( Z ntlni’nl) (1 _ ;,)31xq2+sr2dr
0 n=0
! - n—1 i 3“—'7+s
<A Y nayr (1—7r)72 "dr. (13)
0 n=0

Using Theorem 8 in (13), we deduced that

1— p N s 1 0 . p 3ag
/ =Df(x)| (1—[x|*)Z **(G(x,a))"dB, < A/ (Z nayr" > (1—r)2 Tdr
By(0) |2 0 \;=0
< A i 2—n(30¢q2+s+1)t5. (14)
n=0

Since

ty = Z kay < pian Z ay,
kel kel

we obtain that,

A;”l (0)

Therefore, we have

1— F 3ag (3 s
5Df(0) (1—x[2) 2% (G(x,0))%dBy < Ay Y 27T P (Y |g )P,

n=0 kel

© sy
£ s (pas) < A1 Yo 27T HTPED (Y Ja]) < o,
n=0 kel

where A, is a constant. Then, the last inequality implies that f € F&(p,q,s) and the proof of our theorem is
completed. O

For the converse of Theorem 9, we consider the following theorem.

Proposition 10. (see [5]) Let « = (a1,a2),4; € R, i = 1,2 be the vector of real coefficients defining Hy o(x) =
(y101 + yap)". Suppose that |a|*> = a3 + a3 # 0. Then,

Ir'(zp+1)
[ Hell? =2my/rr|a|? —2°—=, where 0 < p < . (15)
L (OB I(§p+3)
Moreover, we have (see [5])
| = 3DHall! 5w B %/”zlp+1>
5 p@B1) _ > AnP >0, (16)
Fnally, om,) B<§,gp+1>
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Corollary 11. [5] Assume that p > 2. Then,

DH 243
I = >DHne iy > (17)

[

Theorem 12. Leta > 1,2 <p < oo, -2 << 00,5 >0,and0 < |x| =r < 1. If

ad H
Flx) = ( 5 aLL an> € FX(p,q,5)- (18)
=0 (1= [x[2) % |[Huallz, @8,)
Then,
Z 2—n(%aq+s—p+1)(z |ak|)f7 < oo. (19)
n=0 kel
Proof. Since
3aq
Iflesiag = sur / DFOI (1= [x) 52 (G(x,0)) dB,
aEBl
300 s (1= [x[*)(1 —|a*)\°
= su D x|?)=2 +25< — dB
o L PN [P) T .
> sup / IDF(x)P(1— |x|?) 2 +%dB,  (where a = 0). (20)
ﬂEBl

Hence, we have

1= 2434 435
HfHFg(p,q,s) > /Bl(o) | — EDf(x)|P(1 —|x[*) 2 T°dBy (where a = 0).

/ %5H }
an
B (0) L

=0 {a — lx2)
] is a homogeneous hyperholomorphic polynomial of degree n-1 and it can be written in

[e9)

P 3aq
(1—|x?)7 T3dB,. (21)

HnellL,@8))

where { —3D

i
[Hnellr, @8,)
the form

{ —3DH,
HnallL,@B,)

} =r" Do, (¢1, ¢2), (22)

where

o= ([l )

‘Hn,a || Ly(0By)

Now, by the inner product (f,g)ag, (o) faIB% ) f(x)g(x)dTy, the orthogonality of the spherical
monogenic ®y, (¢1, ¢2) (see [20]) in L, (0B (0 )) From (22) and (23) to (21), we have
i _%EHH,a :|11n P

Lol & l—
B1(0) | ;=0 (1—|x|2) % ”H"r“HLp(aIBl)
1 I
/0 /81831 (O) < ; ) 85+p Vl (¢l/ (Pz)an
21172 14

0(1—

1 o0 [ee] o 2 3

- /O /aB (0)< 22 W,%(@,@)@(%,@)@) P(1—r) 2 dr = L. (24)
1 n=0j=0 —r2)2

(1 _ ‘x|2)¥+3sdﬁx

14
2

n—1 2 3ag
> r2(1—r?) 2 P3drdr

From Holder’s inequality, we have
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P
, (where1 < p < o0).

/8181(0) |f(x)[PdTy > (47‘[)1—17

/a s o)

From (25), for 2 < p < oo, we have

14

2n—2 2 3n
Lz @t (ZW 901 ) B ey ) )

(1-12) %

(& _ z 3ug  _p
> @0 [ (X 20l 00l e, ) P02 E
n=0

From Corollary 11, we have

” _ %5Hn'a”L2(aBl) > An% > An?.

Hq)n((Pll(PZ)”LZ (0By) ||Hnu¢||L (3B,)
¢ P

Then, from above we have

NI

v

Ag/ol(f Han e ) (1) hag,

n=0

where Aj, j =1,2,3, are constants do not depending on .
Now, by applying Theorem 8 in equation (27), we deduced that

Ay & _p 3 /4
fligpgn > L2 R L 200 (T o),
n=0 kel
where
: !
3
2 kz‘ﬂklz > <2n> (Z |€lk|2) .
kel kely
Then,

P

()
_ ‘I 14
If Nl (pqs) =L = C y 27 P ( (Y a2,
n=0 kel,

From [21], we have

™M=
R
IA

N
1=z
R

4 N
p) < NPTLY alh.
n=0

3
Il
o

Then, we have

d 31x
I£lee(pasy 2 12 C1 127 S (Y )

kel

where C; be a constants which do not depend on 7. Then,

i zfn(sg—q+sfp+l) < Z |uk|)l7

n=0 kel

(25)

(26)

27)

(28)

(29)

(30)

@1
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This completes the proof of theorem. [

Theorem 13. Let o« > 1,2 < p < 00, =2 < g < 00, and s > 0, then we have

d H
fo = (& o w) € Fipe) 32)
=0 (1—[x[*) % |Huallr,om,)
if and only if,
Z y—n(3aq+s—p+1) ( Z |ak|)lﬂ < . (33)
n=0 kel

Proof. This theorem can be proved directly from Theorem 9 and Theorem 12. O

4. Conclusion

We have introduce a new class of hyperholomorphic functions, which is also called F&(p, g, s) spaces. For
this class, we give some characterizations of the hyperholomorphic F&(p, q,s) functions by the coefficients of
certain lacunary series expansions in quaternion analysis.
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