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1. Introduction

Q uaternions were introduced for the first time by William Rowan Hamilton in 1843 [1].The
generalizations of the theory of holomorphic functions in one complex variable is known as

Quaternion analysis [2–5]. Quaternions are also recognized as a powerful tool for modeling and solving
problems in theoretical as well as applied mathematics [6]. The emergence of a large of software packages
to perform computations in the algebra of the real quaternions [7], or more generally, Clifford algebra has been
enhanced by the increasing interest in using quaternions and their applications in almost all applied sciences
[8,9].

Definition 1. Let 0 < p < ∞, −2 < q < ∞ and 0 < s < ∞ and let f be an analytic function in D. If

‖ f ‖p
F(p,q,s) = sup

a∈D

∫
D
| f ′(z)|p(1− |z|2)qgs(z, a)dA(z) < ∞,

then f ∈ F(p, q, s). Moreover, if

lim
|a|→1

∫
D
| f ′(z)|p(1− |z|2)qgs(z, a)dA(z) = 0,

then f ∈ F0(p, q, s).

To introduce the meaning of hyperholomorphic functions, let H be the skew field of quaternions. The
element w ∈ H can be written in the form:

w = w0 + w1i + w2 j + w3k, w0, w1, w2, w3 ∈ R,

where 1, i, j, k are the basis elements of H. For these elements we have the multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k, kj = −jk = i, ki = −ik = j.

The conjugate element w̄ is given by w̄ = w0 − w1i− w2 j− w3k, and we have the property

ww̄ = w̄w = ‖w‖2 = w2
0 + w2

1 + w2
2 + w2

3.
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Moreover, we can identify each vector ~x = (x0, x1, x2) ∈ R3 with a quaternion x of the form

x = x0 + x1i + x2 j.

We will work in the unit ball in the real three-dimensional space, B1(0) ⊂ R3. We will consider functions
f defined on B1(0) with values in H. We define a generalized Cauchy-Riemann operator D and it’s conjugate
D by

D f =
∂ f
∂x0

+ i
∂ f
∂x1

+ j
∂ f
∂x2

,

and
D f =

∂ f
∂x0
− i

∂ f
∂x1
− j

∂ f
∂x2

.

For these operators, we have
DD = DD = ∆3,

where ∆3 is the Laplacian for functions defined over domains in R3. We denote by ϕa(x) = (a − x)(1 −
āx)−1, |a| < 1, the Möbius transform, which maps the unit ball onto itself.

Let

g(x, a) =
1

4π

(
1

|ϕa(x)| − 1
)

be the modified fundamental solution of the Laplacian in R3. Let f : B 7→ H be a hyperholomorphic function.
Then [4]:

• B( f ) = sup
x∈B

(1− |x|2)3/2|D f (x)|,

• Qp( f ) = sup
a∈B

∫
B |D f (x)|2gp(x, a)dBx.

Definition 2. Let 0 < α < ∞. The hyperholomorphic α-Bloch space is defined as follows (see[2]):

Bα = { f ∈ ker D : sup
x∈B

(1− |x|2)
3α
2 |D f (x)| < ∞}.

The little α-Bloch type space Bα
0 is a subspace of B consisting of all f ∈ Bα such that

lim
|x|→1−

(1− |x|2)
3α
2 |D f (x)| = 0.

Definition 3. ([10]) Let f be quaternion-valued function in B. For 0 < p < ∞, −2 < q < ∞ and 0 < s < ∞. If

‖ f ‖p
F(p,q,s) = sup

a∈B

∫
B
|D f (x)|p(1− |x|2)

3q
2

(
1− |ϕa(x)|2

)s

dBx < ∞,

then f ∈ F(p, q, s). Moreover, if

lim
|a|→1

∫
B
|D f (x)|p(1− |x|2)

3q
2

(
1− |ϕa(x)|2

)s

dBx = 0,

then f ∈ F0(p, q, s).

The green function in R3 is defined as (see [11]):

G(x, a) =
1− |ϕa(x)|2
|1− ax| .

We introduce following new definition of so called hyperholomorphic Fα
G(p, q, s) spaces.

Definition 4. Let 1 < α, p < ∞, −2 < q < ∞, and s > 0. Assume that f be hyperholomorphic function in the
unit ball B1(0). Then, f ∈ Fα

G(p, q, s), if
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Fα
G(p, q, s) =

{
f ∈ kerD : sup

a∈B1(0)

∫
B1(0)

|D f (x)|p(1− |x|2)3αq2+2s(G(x, a)
)sdBx < ∞

}
.

The space Fα
G,0(p, q, s) is subspace of Fα

G(p, q, s) consisting of all functions f ∈ Fα
G(p, q, s), such that

lim
|a|→1−

∫
B1(0)

|D f (x)|p(1− |x|2)
3αq

2 +2s(G(x, a)
)sdBx = 0.

Our objective in this article is twofold. First, we study the generalized quaternion space Fα
G(p, q, s) and

characterize their relations to the quaternion Bα
0 . Second, characterizations Fα

G(p, q, s) function space by the
coefficients of Hadamard gap expansions. The following lemma, we will need in the sequel:

Lemma 5. [12]. Let 0 < R < 1, 1 < q, a ∈ B1(0) and f : B1(0) −→ H be a hyperholomorphic function. Then

|D f (a)|q ≤ 3 · 42+q

πR3(1− R2)2q(1− |a|2)3

∫
M(a,R)

∣∣D f (x)
∣∣q dBx .

2. Power series expansions in R3

The major difference to power series in the complex case consists in the absence of regularity of the basic
variable x = x0 + x1i + x2 j and of all of its natural powers xn, n = 2, 3, . . .. This means that we should expect
other types of terms, which could be designated as generalized powers. We use a pair y = (y1, y2) of two
regular variables given by

y1 = x1 − ix0 and y2 = x2 − jx0,

and a multi-index ν = (ν1, ν2), |ν| = (ν1 + ν2) to define the ν-power of y by a |ν|-ary product [5,13,14].

Definition 6. Let ν1 elements of the set a1, ...., a|ν| be equal to y1 and ν2 elements be equal to y2. Then the
ν-power of y is defined by

y :=
1
|ν|! ∑

(i1,...,i|ν|)∈π(1,...|ν|)
ai1ai2...ai|ν| , (1)

where the sum runs over all permutations of (1, ...., |ν|).

The general form of the Taylor series of left monogenic functions in the neighborhood of the origin is
given as [14]:

P(y) :=
∞

∑
n=0

(
∑
|ν|=n

yνcν

)
, cν ∈ H. (2)

Theorem 7. [5,15]) Let g(x) be left hyperholomorphic with the Taylor series (2). Then∣∣∣∣12 Dg(x)
∣∣∣∣ ≤ ∞

∑
n=1

n
(

∑
|ν|=n

|cν|
)
|x|n−1. (3)

We introduce the notation Hn(x) := ∑
|ν|=n

y|ν|cν and consider monogenic functions composed by Hn(x) in

the following form:

f (x) =
∞

∑
n=0

Hn(x)bn, bn ∈ H.

Using (3), we have ∣∣∣∣12 D f (x)
∣∣∣∣ ≤ ∞

∑
n=1

n
(

∑
|ν|=n

|cν|
)
|bn||x|n−1. (4)
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This is the motivation for another notation,

an :=
(

∑
|ν|=n

|cν|
)
|bn| (an ≥ 0), (5)

finally, we have ∣∣∣∣12 D f (x)
∣∣∣∣ ≤ ∞

∑
n=1

nan|x|n−1. (6)

3. Lacunary series expansions in Fα
G(p, q, s) spaces

In this section, we give a sufficient and necessary condition for the hyperholomorphic function f on B1(0)
of R3 with Hadamard gaps to belong to the weighted hyperholomorphic Fα

G(p, q, s) spaces. The function

f (r) =
∞

∑
k

akrnk ( nk ∈ N; ∀ k ∈ N) (7)

belong to the Hadamard gap class (Lacunary series) if there exists a constant λ > 1 such that nk+1
nk
≥ λ, ∀ k ∈ N.

Characterizations in higher dimensions using several complex variables and quaternion sense [16–18].

Theorem 8. Let f (r) = ∑∞
n=1 anrn, with an ≥ 0. If α > 0, p > 0. Then

∫ 1

0
(1− r)α−1( f (r))p dr ≈

∞

∑
n=0

2−nα tp
n, (8)

where tn = ∑k∈In ak, n ∈ N, In = {k : 2n ≤ k < 2n+1; k ∈ N}.

Proof. The prove of this theorem can be obtained easily from Theorem 2.5 of [19] with the same steps.

Theorem 9. Let α, p ≥ 1, −2 < q < ∞, s > 0, and In = {k : 2n ≤ k < 2n+1; k ∈ N}. Suppose that f (x) =
∞
∑

n=0
Hn(x)bn, bn ∈ H, where Hn(x) be homogenous hyperholomorphic polynomials of degree n, and let an be define as

before in (5). If

∞

∑
n=0

2−n( 3
2 αq+s−p+1)(∑

k∈In

|ak|
)p

< ∞, (9)

then

sup
a∈B1(0)

∫
B1(0)

∣∣∣∣12 D f (x)
∣∣∣∣p(1− |x|2) 3αq

2 +2s(G(x, a)
)sdBx < ∞, (10)

and f ∈ Fα
G(p, q, s).

Proof. Suppose that (9) holds. Using the equality

G(x, a) =
1− |ϕa(x)|2
|1− ax| =

(1− |a|2)(1− |x|2)
|1− ax|3 , (11)

where

1− |x| ≤ |1− ax| ≤ 1 + |x|, 1− |a| ≤ |1− ax| ≤ 1 + |a| ≤ 2. (12)

Then, we get
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∫
B1(0)

∣∣∣∣12 D f (x)
∣∣∣∣p(1− |x|2) 3αq

2 +2s(G(x, a)
)sdBx

=
∫
B1(0)

∣∣∣∣12 D
( ∞

∑
n=0

Hn(x)bn

)∣∣∣∣p(1− |x|2) 3αq
2 +2s (1− |a|2)s(1− |x|2)s

|1− ax|3s dBx

≤
∫
B1(0)

( ∞

∑
n=0

nanxn−1
)p

(1− |x|2)
3αq

2 +2s (1− |a|2)s(1− |x|2)s

(1− |a|)s(1− |x|)2s dBx

≤ 2
3αq

2 +4s
∫ 1

0

( ∞

∑
n=0

nanrn−1
)p

(1− r)3αq2+sr2dr

≤ λ
∫ 1

0

( ∞

∑
n=0

nanrn−1
)p

(1− r)
3αq

2 +sdr. (13)

Using Theorem 8 in (13), we deduced that

∫
B1(0)

∣∣∣∣12 D f (x)
∣∣∣∣p(1− |x|2) 3αq

2 +2s(G(x, a)
)sdBx ≤ λ

∫ 1

0

( ∞

∑
n=0

nanrn−1
)p

(1− r)
3αq

2 +sdr

≤ λ
∞

∑
n=0

2−n(3αq2+s+1)tP
n . (14)

Since
tn = ∑

k∈In

kak < 2n+1 ∑
k∈In

ak,

we obtain that,

∫
B1(0)

∣∣∣∣12 D f (x)
∣∣∣∣p(1− |x|2) 3αq

2 +2s(G(x, a)
)sdBx ≤ λ1

∞

∑
n=0

2−n( 3αq
2 +s−p+1)(∑

k∈In

|ak|
)p.

Therefore, we have

‖ f ‖Fα
G(p,q,s) ≤ λ1

∞

∑
n=0

2−n( 3αq
2 +s−p+1)(∑

k∈In

|ak|
)p

< ∞,

where λ1 is a constant. Then, the last inequality implies that f ∈ Fα
G(p, q, s) and the proof of our theorem is

completed.

For the converse of Theorem 9, we consider the following theorem.

Proposition 10. (see [5]) Let α = (α1, α2), αi ∈ R, i = 1, 2 be the vector of real coefficients defining Hn,α(x) =

(y1α1 + y2α2)
n. Suppose that |α|2 = α2

1 + α2
2 6= 0. Then,

‖Hn,α‖p
Lp(∂B1)

= 2π
√

π|α|np Γ( n
2 p + 1)

Γ( n
2 p + 3

2 )
, where 0 < p < ∞. (15)

Moreover, we have (see [5])

‖ − 1
2 DHn,α‖p

Lp(∂B1)

‖Hn,α‖p
Lp(∂B1)

= np
B
(

1
2 , n−1

2 p + 1
)

B
(

1
2 , n

2 p + 1
) ≥ λnp > 0, (16)

where, B
(

1
2 , n−1

2 p + 1
)
=

Γ( 1
2 )Γ( n−1

2 p+1)
Γ( n−1

2 p+ 3
2 )

, and lim
n→∞

B( 1
2 , n−1

2 p+1)
B( 1

2 , n
2 p+1)

= 1.
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Corollary 11. [5] Assume that p ≥ 2. Then,

‖ − 1
2 DHn,α‖2

L2(∂B1)

‖Hn,α‖2
Lp(∂B1)

≥ λn
2+3p

2p . (17)

Theorem 12. Let α ≥ 1, 2 ≤ p < ∞, −2 < q < ∞, s > 0, and 0 < |x| = r < 1. If

f (x) =
( ∞

∑
n=0

Hn,α

(1− |x|2)
8s+p

4p ‖Hn,α‖Lp(∂B1)

an

)
∈ Fα

G(p, q, s). (18)

Then,

∞

∑
n=0

2−n( 3
2 αq+s−p+1)(∑

k∈In

|ak|
)p

< ∞. (19)

Proof. Since

‖ f ‖Fα
G(p,q,s) = sup

a∈B1(0)

∫
B1(0)

|D f (x)|p(1− |x|2)
3αq

2 +2s(G(x, a)
)sdBx

= sup
a∈B1(0)

∫
B1(0)

|D f (x)|p(1− |x|2)
3αq

2 +2s
(
(1− |x|2)(1− |a|2)

|1− ax|3

)s

dBx

≥ sup
a∈B1(0)

∫
B1(0)

|D f (x)|p(1− |x|2)
3αq

2 +3sdBx (where a = 0). (20)

Hence, we have

‖ f ‖Fα
G(p,q,s) ≥

∫
B1(0)

| − 1
2

D f (x)|p(1− |x|2)
3αq

2 +3sdBx (where a = 0).

=
∫
B1(0)

∣∣∣∣ ∞

∑
n=0

[ − 1
2 DHn,α

(1− |x|2)
8s+p

4p ‖Hn,α‖Lp(∂B1)

]
an

∣∣∣∣p(1− |x|2) 3αq
2 +3sdBx. (21)

where
[
− 1

2 DHn,α
‖Hn,α‖Lp(∂B1)

]
is a homogeneous hyperholomorphic polynomial of degree n-1 and it can be written in

the form [ − 1
2 DHn,α

‖Hn,α‖Lp(∂B1)

]
= r(n−1)Φn(φ1, φ2), (22)

where

Φn(φ1, φ2) :=
([ − 1

2 DHn,α

‖Hn,α‖Lp(∂B1)

])
∂B1

. (23)

Now, by the inner product 〈 f , g〉∂B1(0) =
∫

∂B1(0)
f (x)g(x)dΓx, the orthogonality of the spherical

monogenic Φn(φ1, φ2) (see [20]) in L2(∂B1(0)). From (22) and (23) to (21), we have

∫
B1(0)

∣∣∣∣ ∞

∑
n=0

[ − 1
2 DHn,α

(1− |x|2)
8s+p

4p ‖Hn,α‖Lp(∂B1)

]
an

∣∣∣∣p(1− |x|2) 3αq
2 +3sdBx

=
∫ 1

0

∫
∂B1(0)

(∣∣∣∣ ∞

∑
n=0

rn−1

(1− r2)
8s+p

4p

Φn(φ1, φ2)an

∣∣∣∣2)
p
2

r2(1− r2)
3αq

2 +3sdΓxdr

=
∫ 1

0

∫
∂B1(0)

( ∞

∑
n=0

∞

∑
j=0

an
r2n−2

(1− r2)
8s+p

2p

Φn(φ1, φ2)Φj(φ1, φ2)aj

) p
2

r2(1− r2)
3αq

2 +3sdΓxdr = L. (24)

From Hölder’s inequality, we have



Open J. Math. Sci. 2019, 3, 322-330 328

∫
∂B1(0)

| f (x)|pdΓx ≥ (4π)1−p
∣∣∣∣ ∫

∂B1(0)
f (x)dΓx

∣∣∣∣p, (where 1 ≤ p < ∞). (25)

From (25), for 2 ≤ p < ∞, we have

L ≥ (4π)1− p
2

∫ 1

0

( ∞

∑
n=0
|an|2

r2n−2

(1− r2)
8s+p

2p

‖Φn(φ1, φ2)‖2
L2(∂B1)

) p
2

r2(1− r2)
3αq

2 +3sdr

≥ (4π)1− p
2

∫ 1

0

( ∞

∑
n=0
|an|2r2n−2‖Φn(φ1, φ2)‖2

L2(∂B1)

) p
2

r3(1− r2)
3αq

2 +s− p
4 dr (26)

From Corollary 11, we have

‖Φn(φ1, φ2)‖2
L2(∂B1)

=
‖ − 1

2 DHn,α‖L2(∂B1)

‖Hn,α‖Lp(∂B1)
≥ λn

2+3p
2p ≥ λn

3
2 .

Then, from above we have

L ≥ (4π)1− p
2 λ
∫ 1

0

( ∞

∑
n=0

n
3
2 |an|2r2n−2

) p
2

r3(1− r2)
3αq

2 +s− p
4 dr

= λ1

∫ 1

0

( ∞

∑
n=0

n
3
2 |an|2r2n−2

) p
2

r3(1− r2)
3αq

2 +s− p
4 dr

=
λ1

2

∫ 1

0

( ∞

∑
n=0

n
3
2 |an|2ξn−1

) p
2

ξ(1− ξ)
3αq

2 +s− p
4 dξ

≥ λ3

∫ 1

0

( ∞

∑
n=0

n
3
2 |an|2ξn−1

) p
2

(1− ξ)
3αq

2 +s− p
4 dξ, (27)

where λj, j = 1, 2, 3, are constants do not depending on n.
Now, by applying Theorem 8 in equation (27), we deduced that

‖ f ‖Fα
G(p,q,s) ≥ L ≥ λ3

k

∞

∑
n=0

2−n( 3αq
2 +s− p

4 +1)(∑
k∈In

k
3
2 |ak|2

) p
2 , (28)

where

∑
k∈In

k
3
2 |ak|2 >

(
2n
) 3

2
(

∑
k∈In

|ak|2
) p

2

.

Then,

‖ f ‖Fα
G(p,q,s) ≥ L ≥ C

∞

∑
n=0

2−n( 3αq
2 +s−p+1)(∑

k∈In

|ak|2
) p

2 , (29)

From [21], we have
N

∑
n=0

ap
n ≤

( N

∑
n=0

ap
n

)p

≤ Np−1
N

∑
n=0

ap
n.

Then, we have

‖ f ‖Fα
G(p,q,s) ≥ L ≥ C1

∞

∑
n=0

2−n( 3αq
2 +s−p+1)(∑

k∈In

|ak|
)p, (30)

where C1 be a constants which do not depend on n. Then,

∞

∑
n=0

2−n( 3αq
2 +s−p+1)

(
∑

k∈In

|ak|
)p

< ∞. (31)
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This completes the proof of theorem.

Theorem 13. Let α ≥ 1, 2 ≤ p < ∞, −2 < q < ∞, and s > 0, then we have

f (x) =
( ∞

∑
n=0

Hn,α

(1− |x|2)
8s+p

4p ‖Hn,α‖Lp(∂B1)

an

)
∈ Fα

G(p, q, s), (32)

if and only if,

∞

∑
n=0

2−n( 3
2 αq+s−p+1)(∑

k∈In

|ak|
)p

< ∞. (33)

Proof. This theorem can be proved directly from Theorem 9 and Theorem 12.

4. Conclusion

We have introduce a new class of hyperholomorphic functions, which is also called Fα
G(p, q, s) spaces. For

this class, we give some characterizations of the hyperholomorphic Fα
G(p, q, s) functions by the coefficients of

certain lacunary series expansions in quaternion analysis.
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