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1. Introduction

T he problem of the small oscillations of a heavy homogeneous inviscid liquid in an open rigid container
has been the subject, from the pioneering work by Moiseyev [1], of numerous papers, that are analyzed

in the books [2–4].
The same problem in the case of an elastic container is studied in the book [5]. Recently, we have solved

the problem of the small oscillations of an heterogeneous liquid in an elastic container [6].
In this work, we study the problem of the small oscillations of a system formed by a heavy barotropic

gas (or a compressible fluid) and an elastic body with negligible density, circumitance that can happen in the
transport of fluids. At first, we establish the equations of motion of the system body-gas and the boundaries
conditions. Afterwards, introducing an auxiliary problem, that requires a careful mathematical discussion,
and that is the problem of the motion of the body when the motion of the gas is known, we show a linear
operator depending on the elasticity of the body, that permits us to reduce the problem to a problem for the
gas only. From the variational equation of this last problem, we prove that it is a classical vibration problem.

2. Position of the problem

We consider, in the field of the gravity, an elastic body with negligible density, that occupies in the
equilibrium position a domain Ω′ bounded by a fixed external surface S and an internal surface Σ. The interior
Ω of this surface is completely filled by a heavy barotropic gas.

We choose orthogonal axes Ox1x2x3, Ox3 vertical directed upwards and we denote by −→n the unit vector
normal to the surfaces. We are going to study the small oscillations of the system elastic body-gas about its
equilibrium position, in the framework of the linear theory.

3. The equations of the problem

3.1. The equations of the elastic body with negligible density

Let ~̂u′(xi) the (small) displacement of the particle of the body from the natural state to the equilibrium
position. The equilibrium equations are:

0 =
∂σ′ij(~̂u

′)

∂xj
in Ω′ (i, j = 1, 2, 3) (1)
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Figure 1. Model of the system

and the boundary conditions are

~̂u′|S = 0 ; σ′ij(~̂u
′)nj = −p0ni on Σ , (2)

where p0 is the pressure of the gas in the equilibrium position and where we have set:

σ′ij(~̂u
′) = λ′δijdiv~̂u′ + 2µ′ε′ij(~̂u

′) ; ε′ij(~̂u
′) =

1
2

(
∂û′i
∂xj

+
∂û′j
∂xi

)

λ′ and µ′ are the Lame’s coefficients; σ′ij(~̂u
′) and ε′ij(~̂u

′) are the components of the stress tensor and the strain
tensor respectively.

Now, let ~u′(xi, t) the displacement of a particle from its equilibrium position to its position at the instant
t. We have

0 =
∂σ′ij(~̂u

′ + ~u′)

∂xj
in Ω′

and consequently

0 =
∂σ′ij(~u

′)

∂xj
in Ω′ , (3)

and in the same manner
~u′|S = 0 . (4)

Let ~u (xi, t) the displacement of a particle of the gas from its equilibrium position to its position at the
instant t; we must have the kinematic condition:

u′n|Σ = un|Σ , (5)

where we have set un = ~u ·~n.

3.2. The equations of the barotropic gas

Let ρ∗, P the density and the pressure of the gas that are related by

P = P (ρ∗) , (6)

where P is a given smooth increasing function. If ρ0 is the density in the equilibrium postion, we have

p0 = P (ρ0)

and the equilibrium equation
−−→
gradp0 = −ρ0g~x3 (7)

Then, p0 and ρ0 are functions of x3 only and we have

dp0(x3)

dx3
= −ρ0(x3)g . (8)
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Setting classically
c2

0 (x3) = P ′ (ρ0 (x3)) , (9)

we obtain
c2

0 (x3) ρ′0 (x3) = −ρ0 (x3) g . (10)

It is a differential equation of the first order that must be verified by ρ0 (x3). The equation of the motion
of the gas are, besides (6):

ρ∗~̈u = −
−−→
gradP− ρ∗g~x3 (Euler’s equation) in Ω , (11)

∂ρ∗

∂t
+ div(ρ∗~̇u) = 0 (continuity equation) in Ω . (12)

Since, we study the small motions of the gas about its equilibrium position, we set

ρ∗ = ρ0(x3) + ρ̃(xi, t) + · · · ,

P = p0(x3) + p(xi, t) + · · · .

The ρ̃ and the dynamic pressure p are of the first order with respect to the amplitude of the oscillations,
the dots represent terms of order greater than one. We have, at the first order

∂ρ̃

∂t
+ div(ρ0(x3)~̇u) = 0 ;

integrating between the datum of the equilibrium position and the instant t, we have

ρ̃ = −div [ρ0(x3)~u] . (13)

Using (6), we have
p0(x3) + p + · · · = P (ρ0(x3) + ρ̃ + · · · )

and then
p = −c2

0(x3)div [ρ0(x3)~u] . (14)

The Euler’s Equation can be written

ρ0~̈u + · · · = −
−−→
grad (p0 + p + · · · )− (ρ0 − div (ρ0~u) + · · · ) g~x3

=
−−→
grad

(
c2

0div (ρ0~u)
)
+ gdiv (ρ0~u)~x3 + · · · ,

and, using the equation (10), finally we get

~̈u =
−−→
grad

(
c2

0(x3)

ρ0(x3)
div (ρ0(x3)~u)

)
, (15)

which is the equation that contains ~u only.

3.3. The dynamic conditions on the surface Σt

Let M a point of Σ. We denote by Mg, Ms the particles of the gas and of the elastic body that are in M at
the instant t = 0. These particles come in M′g, M′s on Σt at the instant t:

−−−→
MM′g = ~u ;

−−−→
MM′s = ~u′

In linear theory, we admit that the unit vectors normal to Σt in M′g and M′s are equipollent to the unit
vector ~n normal in M to Σ and that the pressure of the gas P in M′g is equal to the pressure of the gas in M′,
intersection of Σt with the normal in M to Σ.
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Figure 2. Configuations of Σ and Σt

The dynamic conditions on Σt are

σ′ij(~̂u
′ + ~u′)nj = −P(M′, t)ni .

Or, using the second condition (2):

σ′ij(~u
′)nj = −[P(M′, t)− p0(M)] · ni on Σ .

We have
P(M′, t) = P(M + un|Σ~n, t) = P(M, t) +

−−→
gradP(M) · un|Σ~n + · · ·

Since un|Σ is of the first order, we can, in linear theory, replace
−−→
gradP(M, t) by

−−→
gradp0 = −ρ0 g~x3 ,

so that
P(M′, t) = P(M, t)− ρ0g un|Σ n3|Σ + · · ·

and finally
σ′ij(~u

′)nj = [−p(M, t) + ρ0|Σ gn3|Σ un|Σ]ni on Σ . (16)

Let us call
−→
T t (~u′)|Σ the tangential stress and Tn (~u′)|Σ the normal stress; we have

−→
T t
(
~u′
)
|Σ = 0 ; Tn

(
~u′
)
|Σ = −p|Σ + ρ0|Σ gn3|Σ un|Σ . (17)

4. The auxiliary problem

Step 1.

We introduce the following auxiliary problem:

−
∂σ′ij(~u

′)

∂xj
= 0 in Ω′ ; ~u′|S = 0 ; u′n|Σ = un|Σ ;

−→
T t
(
~u′
)
|Σ = 0 , (18)

where un|Σ is considered as a datum. It is the problem of the motion of an elastic body when the motion of the
gas is known and we seek the solution of this auxiliary problem in the space.

Ξ̂1(Ω′) def
=

{
~u′ ∈ Ξ1(Ω′) def

=
[

H1(Ω′)
]3

; ~u′|S = 0
}

.
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Then u′n|Σ ∈ H1/2(Σ) and consequently, we suppose that un|Σ ∈ H1/2(Σ).

Step 2.

Let
−→
Φ an element of Ξ̂1(Ω′) such that Φn|Σ = un|Σ ∈ H1/2(Σ).

In the following, we will see the construction of such
−→
Φ . We denote by V0 the subspace of Ξ̂1(Ω′) defined

by
V0 =

{
~v0 ∈ Ξ̂1(Ω′) ; v0n|Σ = 0

}
and we seek the solution ~u′ of the auxiliary problem in the form

~u′ =
−→
Φ +~v0 .

The auxiliary problem (18) becomes a problem for ~u0 ∈ V0:

−
∂σ′ij(~u0)

∂xj
=

∂σ′ij(
−→
Φ )

∂xj
in Ω′ ; u0n|Σ = 0 ;

−→
T t
(
~u′0
)
|Σ = −−→T t(

−→
Φ )|Σ . (19)

Let us seek a variational formulation of this problem. We have, for each ~v0 ∈ V0:

−
∫

Ω′

∂σ′ij(~u0)

∂xj
· v̄0i dΩ′ =

∫
Ω′

∂σ′ij(
−→
Φ )

∂xj
· v̄0i dΩ′

or

−
∫

Ω′

[
∂

∂xj
[σ′ij(~u0)v̄0i]− σ′ij(~u0)ε

′
ij(~̄v0)

]
dΩ′

=
∫

Ω′

[
∂

∂xj
[σ′ij(
−→
Φ )v̄0i]− σ′ij(

−→
Φ )ε′ij(~̄v0)

]
dΩ′ ,

or, using the Green’s formula and denoting by~ne, the external normal unit vector to ∂Ω′:

−
∫

S
σ′ij(~u0)nejv̄0i dS−

∫
Σ

σ′ij(~u0)nejv̄0i dΣ +
∫

Ω′
σ′ij(~u0)ε

′
ij(~̄v0)dΩ′

=
∫

S
σ′ij(
−→
Φ )nejv̄0i dS +

∫
Σ

σ′ij(
−→
Φ )nejv̄0i dΣ−

∫
Ω′

σ′ij(
−→
Φ )ε′ij(~̄v0)dΩ′ .

The integrals on S disappear since ~v0|S = 0 and the integrals on Σ disappear by virtue of (19). The
variational formulation of the problem for ~u0 is to find ~u0 ∈ V0 such that∫

Ω′
σ′ij(~u0)ε

′
ij(~̄v0)dΩ′ = −

∫
Ω′

σ′ij(
−→
Φ )ε′ij(~̄v0)dΩ′ ∀~v0 ∈ V0 . (20)

Conversely, let ~u0 a function of t with values in V0 and verifying (20).
We have ∫

Ω′

∂σ′ij(~u0)

∂xj
· v̄0i dΩ′ =

∫
Ω′

[
∂

∂xj
[σ′ij(~u0)v̄0i]− σ′ij(~u0)ε

′
ij(~̄v0)

]
dΩ′

and an anlogous equation by replacing ~u0 by
−→
Φ .

Using (20), we obtain

−
∫

Ω′

∂σ′ij(~u0)

∂xj
· v̄0i dΩ′ +

∫
Σ

σ′ij(~u0)nejv̄0i dΣ =
∫

Ω′

∂σ′ij(
−→
Φ )

∂xj
· v̄0i dΩ′ −

∫
Σ

σ′ij(
−→
Φ )nejv̄0i dΣ .

Taking ~v ∈ [D(Ω′)]3 ⊂ V0, we have

−
∂σ′ij(~u0)

∂xj
=

∂σ′ij(
−→
Φ )

∂xj
in D(Ω′) .
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Taking into account of v0n|Σ = 0, we have∫
Σ

−→
T t(~u0) ·~v0t|Σ dΣ = −

∫
Σ

−→
T t(
−→
Φ ) ·~v0t|Σ dΣ ,

and, since ~v0t|Σ is arbitrary
−→
T t(~u0)|Σ = −−→T t(

−→
Φ )|Σ

and we find the auxiliary problem.
Let us return to its variational formulation (20). The left-hand side can be considered as a scalar product

in V0: ∫
Ω′

σ′ij(~u0)ε
′
ij(~̄v0)dΩ′ = (~u0,~v0)V0

,

The associated norm ‖~u0‖V0
being classically equivalent in V0 to the norm ‖~u0‖1 of Ξ1(Ω′). Since ~u0 ∈

V0 ⊂ Ξ̂1(Ω′), we have

(~u0,~v0)V0
=
∫

Ω′
σ′ij(~u0)ε

′
ij(~̄v0)dΩ′ = (~u0,~v0)Ξ̂1(Ω′) .

Setting ~v0 = ~u0, we have
‖~u0‖V0

= ‖~u0‖Ξ̂1(Ω′) ∀~u0 ∈ V0 .

The variational Equation (20) can be written as

(~u0,~v0)V0
= −

(−→
Φ ,~v0

)
Ξ̂1(Ω′)

∀~v0 ∈ V0 . (21)

But, we have ∣∣∣∣(−→Φ ,~v0

)
Ξ̂1(Ω′)

∣∣∣∣ ≤ ∥∥∥−→Φ ∥∥∥Ξ̂1(Ω′)
‖~v0‖V0

,

so that −
(−→

Φ ,~v0

)
Ξ̂1(Ω′)

is a continuous antilinear form on V0.

Then, by the Lax- Milgram theorem, the precedent problem has one and only solution. Therefore, the
problem (20) has one and one solution ~u0 ∈ V0 and the auxiliary problem has one and only one solution ~u′ in
Ξ̂1(Ω′). The Equation (21) can be written(

~u′,~v0
)

Ξ̂1(Ω′) = 0 ∀~v0 ∈ V0

and the solution ~u′ of the auxiliary problem belongs to the orthogonal of V0 in Ξ̂1(Ω′).

Step 3.

The solution~u′ of the auxiliary problem does not depend on
−→
Φ , since

−→
Φ is not in the terms of the problem.

We are going to use this remark for giving a estimate of ‖~u′‖Ξ̂1(Ω′).

We take, for
−→
Φ , a continuous lifting of un|Σ~n in Ξ̂1(Ω′); we have∥∥∥−→Φ ∥∥∥

Ξ̂1(Ω′)
≤ c

∥∥∥un|Σ

∥∥∥
H1/2(Σ)

(c > 0) .

We have ∣∣∣(~u0,~v0)V0

∣∣∣ ≤ ∥∥∥−→Φ ∥∥∥
Ξ̂1(Ω′)

‖~v0‖V0

and then

‖~u0‖V0
≤
∥∥∥−→Φ ∥∥∥

Ξ̂1(Ω′)

and finally

‖~u0‖V0
≤ c

∥∥∥un|Σ

∥∥∥
H1/2(Σ)



Open J. Math. Sci. 2019, 3, 331-342 337

For the solution ~u′ of the auxiliary problem, we have

~u′ = ~u0 +
−→
Φ

and then ∥∥~u′∥∥Ξ̂1(Ω′) ≤ 2c
∥∥∥un|Σ

∥∥∥
H1/2(Σ)

. (22)

Step 4.

Finally, we study Tn(~u′)|Σ that is in the second dynamic condition (17) of the problem. We are going to
show that it can be expressed by means of un|Σ. The solution ~u′ of our problem verifies:

∂σ′ij(~u
′)

∂xj
= 0 in Ω′ .

Let ~̃w′ an element of Ξ̂1(Ω′). We have, by Green’s formula and ~̃w′|S = 0 :

0 = −
∫

Ω′

∂σ′ij(~u
′)

∂xj
· ¯̃wi dΩ′ = −

∫
Σ

σ′ij(~u
′)nej ¯̃wi dΣ +

∫
Ω′

σ′ij(~u
′)ε′ij(~̄̃w

′)dΩ′ .

Since the solution ~u′ of the initial problem verifies ~Tt(~u′)|Σ = 0, the precedent equation gives:∫
Ω′

σ′ij(~u
′)ε′ij(~̄̃w

′)dΩ′ = −
∫

Σ
Tn(~u′)|Σ ¯̃w′n|Σ dΣ , ∀~̃w′ ∈ Ξ̂1(Ω′) . (23)

On the other hand, if ~v′ ∈ [D(Ω′)]3, we have

0 = −
〈

∂σ′ij(~u
′)

∂xj
, v′i

〉
=
∫

Ω′
σ′ij(~u

′)
∂v̄′i
∂xj

dΩ′

by virtue of the definition of the distributional derivatives. Therefore, we have∫
Ω′

σ′ij(~u
′)ε′ij(~̄v

′)dΩ′ = 0 ∀~v′ ∈
[
D(Ω′)

]3
and by density ∫

Ω′
σ′ij(~u

′)ε′ij(~̄v
′)dΩ′ = 0 ∀~v′ ∈ Ξ1(Ω′) .

Now, we are going to particularize ~̃w′. Let call w′n|Σ a function defined on Σ and belonging to H1/2(Σ)

and let take for ~̃w′ a lifting of w′n|Σ~n in Ξ̂1(Ω′) (so that we have w̃′n|Σ = w′n|Σ). We set

`(~̃w′) =
∫

Ω′
σ′ij(~u

′)ε′ij(~̄̃w
′)dΩ′ . (24)

Since the difference between lifting belongs to Ξ1(Ω′), the right-hand side doesn’t depend on the lifting
~̃w′. Therefore, ` depends on w′n|Σ. Let choose for ~̃w′ a continuous lifting of w′n|Σ~n; for this lifting, we have

∥∥~̃w′∥∥Ξ̂1(Ω′) ≤ α
∥∥∥w′n|Σ~n

∥∥∥
(H1/2(Σ))

3 , (α > 0)

and, if the components of~n are sufficiently smooth:∥∥~̃w′∥∥Ξ̂1(Ω′) ≤ β
∥∥∥w′n|Σ

∥∥∥
H1/2(Σ)

, (β > 0)

But, we have ∣∣`(~̃w′)∣∣ ≤ ∥∥~u′∥∥Ξ̂1(Ω′) ·
∥∥~̃w′∥∥Ξ̂1(Ω′)

and consequently
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∣∣`(~̃w′)∣∣ ≤ β
∥∥~u′∥∥Ξ̂1(Ω′) ·

∥∥∥w′n|Σ
∥∥∥

H1/2(Σ)
(25)

Then, since ` depends on w′n|Σ, it is a continuous antilinear functional on H1/2(Σ), i.e an element of[
H1/2(Σ)

]′
. Taking into account of w̃′n|Σ = w′n|Σ, the equation (23) can be written

∫
Σ

Tn(~u′)|Σ · w̄′n|Σ dΣ = −`(~̃w′) ,

so that the normal stress Tn(~u′)|Σ can be considered as an element of
(

H1/2(Σ)
)′

. Therefore, we have

∣∣∣∣〈Tn(~u′)|Σ, w′n|Σ
〉
(H1/2(Σ))

′
,H1/2(Σ)

∣∣∣∣ ≤ β
∥∥~u′∥∥Ξ̂1(Ω′) ·

∥∥∥w′n|Σ
∥∥∥

H1/2(Σ)

∀w′n|Σ ∈ H1/2(Σ) ,

and then ∥∥Tn(~u′)
∥∥
(H1/2(Σ))

′ ≤ β
∥∥~u′∥∥Ξ̂1(Ω′) .

Using (22), we obtain finally∥∥Tn(~u′)
∥∥
(H1/2(Σ))

′ ≤ δ
∥∥∥un|Σ

∥∥∥
H1/2(Σ)

(δ = 2cβ) .

Consequently, there exists a continuous linear operator T̂ from H1/2(Σ) into
(

H1/2(Σ)
)′

such that

T̂un|Σ = −Tn(~u′)|Σ . (26)

So, we have expressed linearly Tn(~u′)|Σ by means of un|Σ. The linear operator T̂ depends on the elasticity
of the body. We are going to prove that it has properties of symmetry and positivity. We introduce the
analogous problem: to find ~̃u′ ∈ Ξ̂1(Ω′) verifying

−
∂σ′ij(~̃u

′)

∂xj
= 0 in Ω′ ; ~̃u′|S = 0 ; ũ′n|Σ = ũn|Σ ∈ H1/2(Σ) ;

−→
T t
(
~u′
)
|Σ = 0 . (27)

In (23), we replace ~̃w′ by ~̃u′ and we have∫
Ω′

σ′ij(~u
′)ε′ij(~̄̃u

′)dΩ′ = −
∫

Σ
Tn(~u′)|Σ ¯̃u′n|Σ dΣ =

〈
T̂un|Σ, ũ′n|Σ

〉
and since ũ′n|Σ = ũn|Σ: ∫

Ω′
σ′ij(~u

′)ε′ij(~̄̃u
′)dΩ′ =

〈
T̂un|Σ, ũn|Σ

〉
.

Inverting roles of ~u′ and ~̃u′, we obtain∫
Ω′

σ′ij(~̃u
′)ε′ij(~̄u

′)dΩ′ =
〈

T̂ũn|Σ, un|Σ

〉
.

By virtue of the classical symmetry of the left-hand side, we obtain the property of hermitian symmetry〈
T̂un|Σ, ũn|Σ

〉
=
〈

T̂ũn|Σ, un|Σ

〉
.

Now, setting ~̃u′ = ~u′, we have〈
T̂un|Σ, un|Σ

〉
=
∫

Ω′
σ′ij(~u

′)ε′ij(~̄u
′)dΩ′ =

∥∥~u′∥∥2
Ξ̂1(Ω′) .
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By virtue of a trace theorem, we have∥∥∥un|Σ

∥∥∥
H1/2(Σ)

≤ C
∥∥~u′∥∥Ξ̂1(Ω′) (C > 0) .

so that we have 〈
T̂un|Σ, un|Σ

〉
≥ C−2

∥∥∥u′n|Σ
∥∥∥2

H1/2(Σ)

and, since u′n|Σ = un|Σ, the relation of positivity

〈
T̂un|Σ, un|Σ

〉
≥ C−2

∥∥∥un|Σ

∥∥∥2

H1/2(Σ)
.

The second dynamic condition (17) can be written as:

p|Σ = T̂un|Σ + ρ0|Σ g n3|Σ un|Σ . (28)

So, we have reduced ou problem to a problem for a gas only:

~̈u =
−−→
grad

(
c2

0(x3)div [ρ0(x3)~u]
ρ0(x3)

)
. (29)

− c2
0div (ρ0~u)|Σ = T̂un|Σ + ρ0|Σ g n3|Σ un|Σ . (30)

Afterwards, the auxiliary problem gives ~u′, i.e. the motion of the elastic body.

5. Variational formulation of the problem

We consider a field of a admissible displacements ~̃u(xi), smooth in Ω and such that ~̃u =
−−→
grad ϕ̃. We have

∫
Ω

ρ0~̈u · ~̄̃u dΩ =
∫

Ω
ρ0
−−→
grad

(
c2

0div (ρ0~u)
ρ0

)
· ~̄̃u dΩ

=
∫

Σ
c2

0div (ρ0~u) · ¯̃un|Σ dΣ−
∫

Ω

c2
0

ρ0
div (ρ0~u)div

(
ρ0~̄̃u
)

dΩ

and then

∫
Ω

ρ0~̈u · ~̄̃u dΩ +
∫

Ω

c2
0

ρ0
div (ρ0~u)div

(
ρ0~̄̃u
)

dΩ

+
∫

Σ

(
T̂un|Σ + ρ0|Σ g n3|Σ un|Σ

)
¯̃un|Σ dΣ = 0 .

 (31)

Conversely, let ~u a function of t with values in the field of the admissible displacements and verifying
(31). We obtain easily from (31)

0 =
∫

Ω
ρ0

[
~̈u−
−−→
grad

(
c2

0
ρ0

div (ρ0~u)

)]
·
−−→
grad ¯̃ϕ dΩ

+
∫

Σ

[
c2

0div (ρ0~u) + T̂un|Σ + ρ0|Σ g n3|Σ un|Σ

] ∂ ¯̃ϕ
∂n |Σ

dΣ

 ∀~̃u =
−−→
grad ϕ̃ .

or

0 =
∫

Σ
¯̃ϕ · ρ0

[
~̈u−
−−→
grad

(
c2

0
ρ0

div (ρ0~u)

)]
·~n|Σ dΣ

−
∫

Σ

[
c2

0div (ρ0~u) + T̂un|Σ + ρ0|Σ g n3|Σ un|Σ

] ∂ ¯̃ϕ
∂n |Σ

dΣ

−
∫

Ω
div

[
ρ0

(
~̈u−
−−→
grad

(
c2

0
ρ0

div (ρ0~u)

))]
· ¯̃ϕ dΩ .


(32)
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Taking ϕ̃ ∈ D(Ω) and setting

−→
Φ 0 = ρ0

−−→
grad

[
ϕ̈−

c2
0

ρ0
div

(
ρ0
−−→
grad ϕ

)]
,

we have
div
−→
Φ 0 = 0 in Ω . (33)

Taking ϕ̃|Σ arbitrary and ∂ϕ̃
∂n |Σ = 0, we obtain

ρ0

[
~̈u−
−−→
grad

(
c2

0
ρ0

div (ρ0~u)

)]
·~n = 0 on Σ

or −→
Φ 0 ·~n = 0 on Σ . (34)

Finally, taking ∂ϕ̃
∂n |Σ arbitrary, we have

c2
0div (ρ0~u)|Σ + T̂un|Σ + ρ0|Σ g n3|Σ un|Σ = 0 ,

i.e the dynamic condition (30). Since

−→
Φ 0 = ρ0

−−→
grad Ψ , with Ψ = ϕ̈−

c2
0

ρ0
div

(
ρ0
−−→
grad ϕ

)
,

the Equations (33) and (34) give

div
(

ρ0
−−→
gradΨ

)
= 0 in Ω ;

∂Ψ
∂n |Σ

= 0 . (35)

This Weumann problem has for solution only Ψ = constant and consequently

~̈u−
−−→
grad

(
c2

0
ρ0

div (ρ0~u)

)
= 0 .

6. The problem is a classical vibration problem

Step 1.

We precise the field of the admissible displacements by introducing the space V:

V =


~̃u ∈ L 2(Ω)

def
=
[

L2(Ω)
]3

; ~̃u =
−−→
grad ϕ̃ ; ϕ̃ ∈ H̃1(Ω) ; div

(
ρ0~̃u
)
∈ L2(Ω);

∂ϕ̃

∂n |Σ
= ũn|Σ ∈ H1/2(Σ) .

 ,

equipped with the hilbertian norm defined by

‖~u‖2
V =

∫
Ω

ρ0 |~u|2 dΩ +
∫

Ω
|div (ρ0~u)|2 dΩ +

∥∥∥un|Σ

∥∥∥2

H1/2(Σ)
,

and the space H completion of V for the norm associated to the scalar product

(
~u, ~̃u

)
H =

∫
Ω

ρ0~u · ~̄̃u dΩ .

Setting

a
(
~u, ~̃u

)
=
∫

Ω

c2
0

ρ0
div (ρ0~u)div

(
ρ0~̄̃u
)

dΩ +
∫

Σ

(
T̂un|Σ + ρ0|Σ g n3|Σ un|Σ

)
¯̃un|Σ dΣ ,
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we obtain the precise variational formulation of the problem. To find ~u(·) ∈ V such that

(
~̈u, ~̃u

)
H + a

(
~u, ~̃u

)
= 0 ∀~̃u ∈ V .

Step 2.

Let us study the hermitian sesquilinear form

C
(

un|Σ, ũn|Σ

)
def
=
∫

Σ

(
T̂un|Σ + ρ0|Σ g n3|Σ un|Σ

)
¯̃un|Σ dΣ

C is continuous on H1/2(Σ)× H1/2(Σ) and we have:

C
(

un|Σ, un|Σ

)
≥
(

C−2 −maxρ0|Σ g
) ∥∥∥un|Σ

∥∥∥2

H1/2(Σ)
.

In the following, we suppose that C is coercive, i.e

C−2 −maxρ0|Σ g > 0

(for example, if maxρ0|Σ is sufficiently small).

Then,
[
C
(

un|Σ, un|Σ

)]1/2
defines on H1/2(Σ) a norm that is equivalent to the classical norm of H1/2(Σ).

Step 3.

In order to prove that the problem is a classical vibration problem, we use the method that is introduced
in [7]. We must prove that

a) [a (~u,~u)]1/2 defines on V a norm equivalent to ‖~u‖V .

b) The imbedding V ⊂ H, obviously dense and continuous, hence compact. We omit the proof that is
strictly identical to the proof in [7], p66-68. Therefore there exists a denumerable infinity of positive real
eigenvalues ω2

p:
0 < ω2

1 ≤ ω2
2 ≤ · · · ≤ ω2

p ≤ · · · ; ω2
p → +∞ when p→ +∞ .

The eigenelements
{
~up
}

form an orthonormal basis in H and an orthogonal basis in V equipped with
the scalar product

(
~u, ~̃u

)
V .

To each eigenmotion
{
~up
}

of the gas corresponds an eigenmotion
{
~u′p
}

of the elastic body verifying

∥∥∥~u′p∥∥∥Ξ̂1(Ω′)
≤ 2c

∥∥∥unp|Σ

∥∥∥
H1/2(Σ)

.

�.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the
final manuscript.

Conflicts of Interest: “The authors declare no conflict of interest.”

References

[1] Moiseyev, N. N. (1952). About the oscillations of an ideal incompressible liquid in a container. In Doklady AN SSSR
(Vol. 85, pp. 1-20).

[2] Kopachevsky, N. D., & Krein, S. (2012). Operator Approach to Linear Problems of Hydrodynamics: Volume 2: Nonself-adjoint
Problems for Viscous Fluids (Vol. 146). Birkhäuser.

[3] Moiseyev, N. N., & Rumyantsev, V. V. (2012). Dynamic stability of bodies containing fluid (Vol. 6). Springer Science &
Business Media.

[4] Morand, H.J-P., & Ohayon, R. (1992). Interactions fluides-structures-Masson. Paris.
[5] Rapoport, I.M. (1968). Rapoport, I. M. (2012). Dynamics of elastic containers: partially filled with liquid (Vol. 5). Springer

Science & Business Media.



Open J. Math. Sci. 2019, 3, 331-342 342

[6] Essaouini, H., El Bakkali, L., & Capodanno, P. (2017). Mathematical study of the three dimensional oscillations of a
heavy almost homogeneous liquid partially filling an elastic container. Electronic Journal of Mathematical Analysis and
Applications, 5 (1), 64-80.

[7] Hubert, J. S. (2012). Vibration and coupling of continuous systems: asymptotic methods. Springer Science & Business
Media.

c© 2019 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Position of the problem
	The equations of the problem
	The equations of the elastic body with negligible density
	The equations of the barotropic gas
	The dynamic conditions on the surface t

	The auxiliary problem
	Variational formulation of the problem
	The problem is a classical vibration problem

